Mathematical modeling of hydrodynamic resistance in a viscolicative flow of a viscoelastic fluid
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2023), pp. 45-55.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problems of the oscillatory flow of a viscoelastic fluid in a flat channel for a given harmonic oscillation of the fluid flow rate are solved on the basis of the generalized Maxwell model. The transfer function of the amplitude-phase frequency characteristics is determined. These functions make it possible to evaluate the hydraulic resistance under a given law, the change in the longitudinal velocity averaged over the channel section, as well as during the flow of a viscoelastic fluid in a non-stationary flow, allow, to determine the dissipation of mechanical energy in a non-stationary flow of the medium, which are important in the regulation of hydraulic and pneumatic systems. Since its real part allows, determines the active hydraulic resistance, and the imaginary part is reactive or inductance of the oscillatory flow.
Keywords: viscoelastic fluid, unsteady flow, transfer function, oscillatory flow, phase.
Mots-clés : amplitude
@article{IVM_2023_8_a4,
     author = {K. Navruzov and A. Sh. Begjanov and Sh. B. Sharipova and J. Jumayev},
     title = {Mathematical modeling of hydrodynamic resistance in a viscolicative flow of a viscoelastic fluid},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {45--55},
     publisher = {mathdoc},
     number = {8},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2023_8_a4/}
}
TY  - JOUR
AU  - K. Navruzov
AU  - A. Sh. Begjanov
AU  - Sh. B. Sharipova
AU  - J. Jumayev
TI  - Mathematical modeling of hydrodynamic resistance in a viscolicative flow of a viscoelastic fluid
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2023
SP  - 45
EP  - 55
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2023_8_a4/
LA  - ru
ID  - IVM_2023_8_a4
ER  - 
%0 Journal Article
%A K. Navruzov
%A A. Sh. Begjanov
%A Sh. B. Sharipova
%A J. Jumayev
%T Mathematical modeling of hydrodynamic resistance in a viscolicative flow of a viscoelastic fluid
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2023
%P 45-55
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2023_8_a4/
%G ru
%F IVM_2023_8_a4
K. Navruzov; A. Sh. Begjanov; Sh. B. Sharipova; J. Jumayev. Mathematical modeling of hydrodynamic resistance in a viscolicative flow of a viscoelastic fluid. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2023), pp. 45-55. http://geodesic.mathdoc.fr/item/IVM_2023_8_a4/

[1] Jons J.R., Walters T.S., “Flow of elastic-viscous liquids in channel under the influence of a periodic pressure gradient, p. 1”, Rheol. Acta. Part 1, 6 (1967), 240–245 | DOI

[2] Khabakhpasheva E.M., Popov V.I., Kekalov A.N., Mikhailova E.S., “Pulsating flow of viscoelastic fluids in tubes”, J. Non-Newtonain Fluid Mech., 33:3 (1989), 289–304 | DOI

[3] Casanellas L., Orti'n J., “Laminar oscillatory flow of Maxwell and Oldroyd-B fluids: Theoretical analysis”, J. Non-Newtonain Fluid Mech., 166 (2011), 1315–1326 | DOI | Zbl

[4] Hassan A.Abu-El, El-Maghawru E.M., “Unsteady axial viscoelastic pipe flows of an Oldroyd-B fluid in”, Rheology-New concepic. Appl. and Meth., v. 6, ed. Durairaj R., 2013, 91–106

[5] Akilov Zh.A., Dzhabbarov M.S., Khuzhayorov B.Kh., “Tangential Shear Stress under the Periodic Flow of a Viscoelastic Fluid in a Cylindrical Tube”, Fluid Dynamics, 56:2 (2021), 189–199 | DOI | MR

[6] Ding Z., Jian Y., “Electrokinetic oscillatory flow and energy microchannelis:a linear analysis”, Fluid. Mech., 6919 (2021), 1–31 | MR

[7] Popov D.N., Nestatsionarnye gidromekhanicheskie protsessy, Mashinostroenie, M., 1982

[8] Astarita Dzh., Osnovy gidromekhaniki nenyutonovskikh zhidkostei, Mir, M., 1978

[9] Loitsyanskii L.G., Mekhanika zhidkosti i gaza, Drofa, M., 2003

[10] Kolesnichenko V.I., Sharifulin A.N., Vvedenie v mekhaniku neszhimaemoi zhidkosti, Izd-vo Permsk. nats. issl. polit. un-ta, Perm, 2019