Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2023_8_a3, author = {M. Mirsaburov and S. B. Ergasheva}, title = {The problem in the unbounded domain with the {Frankl} condition on the segment of the degeneration line and with the missing {Gellerstedt} condition for a class of mixed-type equations}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {35--44}, publisher = {mathdoc}, number = {8}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2023_8_a3/} }
TY - JOUR AU - M. Mirsaburov AU - S. B. Ergasheva TI - The problem in the unbounded domain with the Frankl condition on the segment of the degeneration line and with the missing Gellerstedt condition for a class of mixed-type equations JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2023 SP - 35 EP - 44 IS - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2023_8_a3/ LA - ru ID - IVM_2023_8_a3 ER -
%0 Journal Article %A M. Mirsaburov %A S. B. Ergasheva %T The problem in the unbounded domain with the Frankl condition on the segment of the degeneration line and with the missing Gellerstedt condition for a class of mixed-type equations %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2023 %P 35-44 %N 8 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2023_8_a3/ %G ru %F IVM_2023_8_a3
M. Mirsaburov; S. B. Ergasheva. The problem in the unbounded domain with the Frankl condition on the segment of the degeneration line and with the missing Gellerstedt condition for a class of mixed-type equations. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2023), pp. 35-44. http://geodesic.mathdoc.fr/item/IVM_2023_8_a3/
[1] Smirnov M.M., Uravneniya smeshannogo tipa, Vyssh. shk., M., 1985
[2] Frankl F.I., “Obtekanie profilei potokom dozvukovoi skorosti so sverkhzvukovoi zonoi, okanchivayuscheisya pryamym skachkom uplotneniya”, Prikl. matem. i mekhan., 20:2 (1956), 196–202 | Zbl
[3] Lin Tszyan-bin, “O nekotorykh zadachakh Franklya”, Vestn. LGU. Matem. mekhan. astron., 3:13 (1961), 28–39 | Zbl
[4] Devingtal Yu., “O sushestvovanii i edinstvennosti resheniya odnoi zadachi F.I. Franklya”, Izv. vuzov. Matem., 1958, no. 3, 39–51 | MR | Zbl
[5] Kapustin N.Yu., Sabitov K.B., “O reshenii odnoi problemy v teorii zadachi Franklya dlya uravnenii smeshannogo tipa”, Differents. uravneniya, 27:1 (1991), 60–68 | MR | Zbl
[6] Salakhitdinov M.S., Mirsaburov M., Nelokalnye zadachi dlya uravnenii smeshannogo tipa s singulyarnymi koeffitsientami, Universitet, Tashkent, 2005
[7] Bitsadze A.V., Nekotorye klassy uravnenii v chastnykh proizvodnykh, Nauka, M., 1981 | MR
[8] Mirsaburova U.M., “Zadacha so smescheniem na vnutrennikh kharakteristikakh v neogranichennoi oblasti dlya uravneniya Gellerstedta s singulyarnym koeffitsientom”, Izv. vuzov. Matem., 2022, no. 9, 70–82 | Zbl
[9] A.P. Prudnikov, Yu.A. Brychkov, O.I. Marichev, Integraly i ryady. Elementarnye funktsii, Nauka, M., 1981 | MR
[10] Sabitov K.B., Funktsionalnye, differentsialnye i integralnye uravneniya, Vyssh. shk., M., 2005