The problem in the unbounded domain with the Frankl condition on the segment of the degeneration line and with the missing Gellerstedt condition for a class of mixed-type equations
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2023), pp. 35-44.

Voir la notice de l'article provenant de la source Math-Net.Ru

In an unbounded domain, for a class of equations of mixed type with a singular coefficient, the correctness of the problem is investigated when one of the internal characteristics is freed from the Gellerstedt condition and this missing local condition is replaced by an analogue of the Frankl condition on the degeneration line. The uniqueness of the solution of the problem posed is proved using the extremum principle, and the existence of a solution to the problem is proved by the method of integral equations.
Keywords: mixed type equations with a singular coefficient, unbounded mixed domain, missing Gellerstedt condition, analogue of the Frankl condition, nonstandard singular integral equation, isolated first-order singularity.
@article{IVM_2023_8_a3,
     author = {M. Mirsaburov and S. B. Ergasheva},
     title = {The problem in the unbounded domain with the {Frankl} condition on the segment of the degeneration line and with the missing {Gellerstedt} condition for a class of mixed-type equations},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {35--44},
     publisher = {mathdoc},
     number = {8},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2023_8_a3/}
}
TY  - JOUR
AU  - M. Mirsaburov
AU  - S. B. Ergasheva
TI  - The problem in the unbounded domain with the Frankl condition on the segment of the degeneration line and with the missing Gellerstedt condition for a class of mixed-type equations
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2023
SP  - 35
EP  - 44
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2023_8_a3/
LA  - ru
ID  - IVM_2023_8_a3
ER  - 
%0 Journal Article
%A M. Mirsaburov
%A S. B. Ergasheva
%T The problem in the unbounded domain with the Frankl condition on the segment of the degeneration line and with the missing Gellerstedt condition for a class of mixed-type equations
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2023
%P 35-44
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2023_8_a3/
%G ru
%F IVM_2023_8_a3
M. Mirsaburov; S. B. Ergasheva. The problem in the unbounded domain with the Frankl condition on the segment of the degeneration line and with the missing Gellerstedt condition for a class of mixed-type equations. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2023), pp. 35-44. http://geodesic.mathdoc.fr/item/IVM_2023_8_a3/

[1] Smirnov M.M., Uravneniya smeshannogo tipa, Vyssh. shk., M., 1985

[2] Frankl F.I., “Obtekanie profilei potokom dozvukovoi skorosti so sverkhzvukovoi zonoi, okanchivayuscheisya pryamym skachkom uplotneniya”, Prikl. matem. i mekhan., 20:2 (1956), 196–202 | Zbl

[3] Lin Tszyan-bin, “O nekotorykh zadachakh Franklya”, Vestn. LGU. Matem. mekhan. astron., 3:13 (1961), 28–39 | Zbl

[4] Devingtal Yu., “O sushestvovanii i edinstvennosti resheniya odnoi zadachi F.I. Franklya”, Izv. vuzov. Matem., 1958, no. 3, 39–51 | MR | Zbl

[5] Kapustin N.Yu., Sabitov K.B., “O reshenii odnoi problemy v teorii zadachi Franklya dlya uravnenii smeshannogo tipa”, Differents. uravneniya, 27:1 (1991), 60–68 | MR | Zbl

[6] Salakhitdinov M.S., Mirsaburov M., Nelokalnye zadachi dlya uravnenii smeshannogo tipa s singulyarnymi koeffitsientami, Universitet, Tashkent, 2005

[7] Bitsadze A.V., Nekotorye klassy uravnenii v chastnykh proizvodnykh, Nauka, M., 1981 | MR

[8] Mirsaburova U.M., “Zadacha so smescheniem na vnutrennikh kharakteristikakh v neogranichennoi oblasti dlya uravneniya Gellerstedta s singulyarnym koeffitsientom”, Izv. vuzov. Matem., 2022, no. 9, 70–82 | Zbl

[9] A.P. Prudnikov, Yu.A. Brychkov, O.I. Marichev, Integraly i ryady. Elementarnye funktsii, Nauka, M., 1981 | MR

[10] Sabitov K.B., Funktsionalnye, differentsialnye i integralnye uravneniya, Vyssh. shk., M., 2005