Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2023_8_a1, author = {U. D. Durdiev}, title = {Inverse source problem for the equation of forced vibrations of a beam}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {10--22}, publisher = {mathdoc}, number = {8}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2023_8_a1/} }
U. D. Durdiev. Inverse source problem for the equation of forced vibrations of a beam. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2023), pp. 10-22. http://geodesic.mathdoc.fr/item/IVM_2023_8_a1/
[1] Tikhonov A.N., Samarskii A.A., Uravneniya matematicheskoi fiziki, Nauka, M., 1977 | MR
[2] Krylov A.N., Vibratsiya sudov, Onti. Glav. red. sudostroit. lit-ry, L.–M., 1936
[3] Li S., Reynders E., Maes K., De Roeck G., “Vibration-based estimation of axial force for a beam member with uncertain boundary conditions”, J. Sound Vibrat., 332:4 (2013), 795–806 | DOI
[4] Vang I.R., Fang Zh.-V., “Kolebaniya uprugoi balki na nelineinykh oporakh”, Prikl. mekhan. i tekhn. fizika, 56:2 (2015), 196–206 | MR
[5] Sabitov K.B., Akimov A.A., “Nachalno-granichnaya zadacha dlya nelineinogo uravneniya kolebanii balki”, Dif. uravneniya, 56:5 (2020), 632–645 | DOI | Zbl
[6] Sabitov K.B., “K teorii nachalno-granichnykh zadach dlya uravneniya sterzhnei i balok”, Dif. uravneniya, 53:1 (2017), 89–100 | DOI | Zbl
[7] Kasimov Sh.G., Madrakhimov U.S., “Nachalno-granichnaya zadacha dlya uravnenii kolebanii balki v mnogomernom sluchae”, Dif. uravneniya, 55:10 (2019), 1379–1391 | DOI | Zbl
[8] Sabitov K.B., “Nachalno-granichnye zadachi dlya uravneniya kolebanii pryamougolnoi plastiny”, Izv. vuzov. Matem., 2021, no. 10, 60–70 | Zbl
[9] Sabitov K.B, Fadeeva O.V., “Nachalno-granichnaya zadacha dlya uravneniya vynuzhdennykh kolebanii konsolnoi balki”, Vestn. Samarsk. gos. tekhn. un-ta. Ser. Fiz.-matem. nauki, 25:1 (2021), 51–66 | DOI | Zbl
[10] Karchevskii A.L., “Analiticheskie resheniya differentsialnogo uravneniya poperechnykh kolebanii kusochno-odnorodnoi balki v chastotnoi oblasti dlya kraevykh uslovii lyubogo vida”, Sib. zhurn. industrial. matem., 23:4 (2020), 48–68 | Zbl
[11] Prilepko A.I., Kostin A.V., Solovev V.V., “Obratnye zadachi nakhozhdeniya istochnika i koeffitsientov dlya ellipticheskikh i parabolicheskikh uravnenii v prostranstvakh Geldera i Soboleva”, Sib. zhurn. chistoi i prikl. matem., 17:3 (2017), 67–85 | Zbl
[12] Ivanchov N. I., “Ob obratnoi zadache odnovremennogo opredeleniya koeffitsientov teploprovodnosti i teploemkosti”, Sib. matem. zhurn., 35:3 (1994), 612–621 | MR | Zbl
[13] Denisov A. M., Vvedenie v teoriyu obratnykh zadach, Izd-vo Mosk. un-ta, M., 1994
[14] Prilepko A.I., Orlovsky D.G., Vasin I.A., Methods for Solving Inverse Problems in Mathematical Physics, Marcel Dekker, New York, 1999 | MR
[15] Romanov V.G., Obratnye zadachi dlya giperbolicheskikh uravnenii i energeticheskie neravenstva, DAN SSSR, M., 1984 | MR
[16] Kabanikhin S.I., Obratnye i nekorrektnye zadachi, Sibirsk. nauchn. izd-vo, Novosibirsk, 2009
[17] Hasanov A. Hasano$\check{g}$lu, Romanov V.G., Introduction to Inverse Problems for Differential Equations, Springer Internat. Publ., Switzerland, 2017 | MR | Zbl
[18] Durdiev D.K., Totieva Zh.D., “Zadacha ob opredelenii odnomernogo yadra uravneniya vyazkouprugosti”, Sib. zhurn. industrial. matem., 16:2 (2013), 72–82 | MR | Zbl
[19] Durdiev D.K., Rahmonov A.A., “A $2$D kernel determination problem in a visco-elastic porous medium with a weakly horizontally inhomogeneity”, Math. Meth. Appl. Sci., 43:15 (2020), 8776–8796 | DOI | MR | Zbl
[20] Durdiev U., Totieva Z., “A problem of determining a special spatial part of $3$D memory kernel in an integro-differential hyperbolic equation”, Math. Meth. Appl. Sci., 42:18 (2019), 7440–7451 | DOI | MR | Zbl
[21] Durdiev U.D., “A problem of identification of a special $2$D memory kernel in an integro-differential hyperbolic equation”, Eurasian J. Math. and Computer Appl., 7:2 (2019), 4–19 | MR
[22] Durdiev U.D., “Obratnaya zadacha dlya sistemy uravnenii vyazkouprugosti v odnorodnykh anizotropnykh sredakh”, Sib. zhurn. industrial. matem., 22:4 (2019), 26–32 | MR
[23] Karchevskii A.L., Fatyanov A.G., “Chislennoe reshenie obratnoi zadachi dlya sistemy uprugosti s posledeistviem dlya vertikalno neodnorodnoi sredy”, Sib. zhurn. vychisl. matem., 4:3 (2001), 259–268 | MR | Zbl
[24] Karchevskii A.L., “Opredelenie vozmozhnosti razryva porody v ugolnom plaste”, Sib. zhurn. promysh. matem., 20:4 (2017), 35–43 | Zbl
[25] Durdiev U.D., “Chislennoe opredelenie zavisimosti dielektricheskoi pronitsaemosti sloistoi sredy ot vremennoi chastoty”, Sib. elektron. matem. izv., 17 (2020), 179–189 | MR | Zbl
[26] Durdiev U., “Obratnaya zadacha opredeleniya neizvestnogo koeffitsienta v uravnenii vibratsii balki”, Dif. uravneniya, 58 (2022), 36–43 | MR | Zbl
[27] Sabitov K.B., Uravneniya matematicheskoi fiziki, Fizmatlit, M., 2013
[28] Trenogin V.A., Funkitsionalnyi analiz, Nauka, M., 1980