Inverse source problem for the equation of forced vibrations of a beam
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2023), pp. 10-22.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article, direct and inverse problems are studied for the equation of forced vibrations of a beam of finite length with a variable stiffness coefficient at the lowest term. In the direct problem, we consider the initial-boundary value problem for this equation with boundary conditions in the form of a beam fixed at one end and free at the other. The unknown inverse problem is the factor of the right side, which depends on the space variable $x$. To determine it with respect to the solution of the direct problem, an integral overdetermination condition is specified. The uniqueness of the solution of the direct problem is proved by the method of energy estimates. Using the eigenvalues and eigenfunctions of the corresponding elliptic operator, the problems are reduced to integral equations. The method of successive approximations is applied to these equations and existence and uniqueness theorems for solutions are proved.
Keywords: integral equation, eigenvalue, eigenfunction, uniqueness, override condition.
Mots-clés : existence
@article{IVM_2023_8_a1,
     author = {U. D. Durdiev},
     title = {Inverse source problem for the equation of forced vibrations of a beam},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {10--22},
     publisher = {mathdoc},
     number = {8},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2023_8_a1/}
}
TY  - JOUR
AU  - U. D. Durdiev
TI  - Inverse source problem for the equation of forced vibrations of a beam
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2023
SP  - 10
EP  - 22
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2023_8_a1/
LA  - ru
ID  - IVM_2023_8_a1
ER  - 
%0 Journal Article
%A U. D. Durdiev
%T Inverse source problem for the equation of forced vibrations of a beam
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2023
%P 10-22
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2023_8_a1/
%G ru
%F IVM_2023_8_a1
U. D. Durdiev. Inverse source problem for the equation of forced vibrations of a beam. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2023), pp. 10-22. http://geodesic.mathdoc.fr/item/IVM_2023_8_a1/

[1] Tikhonov A.N., Samarskii A.A., Uravneniya matematicheskoi fiziki, Nauka, M., 1977 | MR

[2] Krylov A.N., Vibratsiya sudov, Onti. Glav. red. sudostroit. lit-ry, L.–M., 1936

[3] Li S., Reynders E., Maes K., De Roeck G., “Vibration-based estimation of axial force for a beam member with uncertain boundary conditions”, J. Sound Vibrat., 332:4 (2013), 795–806 | DOI

[4] Vang I.R., Fang Zh.-V., “Kolebaniya uprugoi balki na nelineinykh oporakh”, Prikl. mekhan. i tekhn. fizika, 56:2 (2015), 196–206 | MR

[5] Sabitov K.B., Akimov A.A., “Nachalno-granichnaya zadacha dlya nelineinogo uravneniya kolebanii balki”, Dif. uravneniya, 56:5 (2020), 632–645 | DOI | Zbl

[6] Sabitov K.B., “K teorii nachalno-granichnykh zadach dlya uravneniya sterzhnei i balok”, Dif. uravneniya, 53:1 (2017), 89–100 | DOI | Zbl

[7] Kasimov Sh.G., Madrakhimov U.S., “Nachalno-granichnaya zadacha dlya uravnenii kolebanii balki v mnogomernom sluchae”, Dif. uravneniya, 55:10 (2019), 1379–1391 | DOI | Zbl

[8] Sabitov K.B., “Nachalno-granichnye zadachi dlya uravneniya kolebanii pryamougolnoi plastiny”, Izv. vuzov. Matem., 2021, no. 10, 60–70 | Zbl

[9] Sabitov K.B, Fadeeva O.V., “Nachalno-granichnaya zadacha dlya uravneniya vynuzhdennykh kolebanii konsolnoi balki”, Vestn. Samarsk. gos. tekhn. un-ta. Ser. Fiz.-matem. nauki, 25:1 (2021), 51–66 | DOI | Zbl

[10] Karchevskii A.L., “Analiticheskie resheniya differentsialnogo uravneniya poperechnykh kolebanii kusochno-odnorodnoi balki v chastotnoi oblasti dlya kraevykh uslovii lyubogo vida”, Sib. zhurn. industrial. matem., 23:4 (2020), 48–68 | Zbl

[11] Prilepko A.I., Kostin A.V., Solovev V.V., “Obratnye zadachi nakhozhdeniya istochnika i koeffitsientov dlya ellipticheskikh i parabolicheskikh uravnenii v prostranstvakh Geldera i Soboleva”, Sib. zhurn. chistoi i prikl. matem., 17:3 (2017), 67–85 | Zbl

[12] Ivanchov N. I., “Ob obratnoi zadache odnovremennogo opredeleniya koeffitsientov teploprovodnosti i teploemkosti”, Sib. matem. zhurn., 35:3 (1994), 612–621 | MR | Zbl

[13] Denisov A. M., Vvedenie v teoriyu obratnykh zadach, Izd-vo Mosk. un-ta, M., 1994

[14] Prilepko A.I., Orlovsky D.G., Vasin I.A., Methods for Solving Inverse Problems in Mathematical Physics, Marcel Dekker, New York, 1999 | MR

[15] Romanov V.G., Obratnye zadachi dlya giperbolicheskikh uravnenii i energeticheskie neravenstva, DAN SSSR, M., 1984 | MR

[16] Kabanikhin S.I., Obratnye i nekorrektnye zadachi, Sibirsk. nauchn. izd-vo, Novosibirsk, 2009

[17] Hasanov A. Hasano$\check{g}$lu, Romanov V.G., Introduction to Inverse Problems for Differential Equations, Springer Internat. Publ., Switzerland, 2017 | MR | Zbl

[18] Durdiev D.K., Totieva Zh.D., “Zadacha ob opredelenii odnomernogo yadra uravneniya vyazkouprugosti”, Sib. zhurn. industrial. matem., 16:2 (2013), 72–82 | MR | Zbl

[19] Durdiev D.K., Rahmonov A.A., “A $2$D kernel determination problem in a visco-elastic porous medium with a weakly horizontally inhomogeneity”, Math. Meth. Appl. Sci., 43:15 (2020), 8776–8796 | DOI | MR | Zbl

[20] Durdiev U., Totieva Z., “A problem of determining a special spatial part of $3$D memory kernel in an integro-differential hyperbolic equation”, Math. Meth. Appl. Sci., 42:18 (2019), 7440–7451 | DOI | MR | Zbl

[21] Durdiev U.D., “A problem of identification of a special $2$D memory kernel in an integro-differential hyperbolic equation”, Eurasian J. Math. and Computer Appl., 7:2 (2019), 4–19 | MR

[22] Durdiev U.D., “Obratnaya zadacha dlya sistemy uravnenii vyazkouprugosti v odnorodnykh anizotropnykh sredakh”, Sib. zhurn. industrial. matem., 22:4 (2019), 26–32 | MR

[23] Karchevskii A.L., Fatyanov A.G., “Chislennoe reshenie obratnoi zadachi dlya sistemy uprugosti s posledeistviem dlya vertikalno neodnorodnoi sredy”, Sib. zhurn. vychisl. matem., 4:3 (2001), 259–268 | MR | Zbl

[24] Karchevskii A.L., “Opredelenie vozmozhnosti razryva porody v ugolnom plaste”, Sib. zhurn. promysh. matem., 20:4 (2017), 35–43 | Zbl

[25] Durdiev U.D., “Chislennoe opredelenie zavisimosti dielektricheskoi pronitsaemosti sloistoi sredy ot vremennoi chastoty”, Sib. elektron. matem. izv., 17 (2020), 179–189 | MR | Zbl

[26] Durdiev U., “Obratnaya zadacha opredeleniya neizvestnogo koeffitsienta v uravnenii vibratsii balki”, Dif. uravneniya, 58 (2022), 36–43 | MR | Zbl

[27] Sabitov K.B., Uravneniya matematicheskoi fiziki, Fizmatlit, M., 2013

[28] Trenogin V.A., Funkitsionalnyi analiz, Nauka, M., 1980