On a functional equation with holomorphic coefficients associated with a finite group
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2023), pp. 3-9.

Voir la notice de l'article provenant de la source Math-Net.Ru

{We consider a convex pentagon $D$ that has a pair of parallel and equal sides without a common vertex. We study the linear difference equation associated with this polygon. The coefficients of the equation and the free term are holomorphic in $D$. The solution is sought in the class of functions holomorphic outside the "half" of the $\partial D$ boundary and vanishing at infinity. A method for its regularization is proposed and a condition for its equivalence is found. The solution is represented as a Cauchy-type integral with an unknown density. The principle of contraction mappings in a Banach space is essentially used. Applications to interpolation problems for entire functions of exponential type are indicated.
Keywords: regularization method, Carleman boundary value problem, interpolation problems for entire functions.
@article{IVM_2023_8_a0,
     author = {F. N. Garif'yanov and E. V. Strezhneva},
     title = {On a functional equation with holomorphic coefficients associated with a finite group},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {3--9},
     publisher = {mathdoc},
     number = {8},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2023_8_a0/}
}
TY  - JOUR
AU  - F. N. Garif'yanov
AU  - E. V. Strezhneva
TI  - On a functional equation with holomorphic coefficients associated with a finite group
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2023
SP  - 3
EP  - 9
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2023_8_a0/
LA  - ru
ID  - IVM_2023_8_a0
ER  - 
%0 Journal Article
%A F. N. Garif'yanov
%A E. V. Strezhneva
%T On a functional equation with holomorphic coefficients associated with a finite group
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2023
%P 3-9
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2023_8_a0/
%G ru
%F IVM_2023_8_a0
F. N. Garif'yanov; E. V. Strezhneva. On a functional equation with holomorphic coefficients associated with a finite group. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2023), pp. 3-9. http://geodesic.mathdoc.fr/item/IVM_2023_8_a0/

[1] Garifyanov F.N., Strezhneva E.V., “Summarno-raznostnoe uravnenie dlya analiticheskikh funktsii, porozhdennoe treugolnikom, i ego prilozheniya”, Ufimsk. matem. zhurn., 13:4 (2021), 17–22 | MR | Zbl

[2] Garifyanov F.N., “Polielementnye uravneniya dlya funktsii, analiticheskikh v ploskosti s razrezami”, Sib. matem. zhurn., 57:2 (2016), 276–281 | MR | Zbl

[3] Aksenteva E.P., Garif'yanov F.N., “Sum-difference equation for analytic functions generated by pentagon and its application”, Lobachevskii J. Math., 37:2 (2016), 101–104 | DOI | MR | Zbl

[4] Garifyanov F.N., Strezhneva E.V., “Summarno-raznostnoe uravnenie dlya analiticheskikh funktsii, porozhdennoe shestiugolnikom, i ego prilozheniya”, Izv. vuzov. Matem., 2020, no. 7, 56–62 | Zbl

[5] Garifyanov F.N., Modina S.A., “Yadro Karlemana i ego prilozheniya”, Sib. matem. zhurn., 53:6 (2012), 1263–1273 | MR | Zbl

[6] Muckhelishvili N.I., Singulyarnye integralnye uravneniya, $3$-e izd., Nauka, M., 1968 | MR

[7] Mikhlin S.G., Lektsii po lineinym integralnym uravneniyam, Fizmatlit, M., 1959

[8] Zverovich E.I., “Metod lokalno-konformnogo skleivaniya”, DAN SSSR, 205:4 (1972), 767–770 | Zbl

[9] Biberbakh L., Analiticheskoe prodolzhenie, perevod s nemets. yaz., Nauka, M., 1967