Fundamental solution of a singular Bessel differential operator with a negative parameter
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2023), pp. 52-65
Voir la notice de l'article provenant de la source Math-Net.Ru
The singular differential Bessel operator $B_{-\gamma}$ with negative parameter $-\gamma0$ is considered. Solutions of the singular differential Bessel equation $B_{-\gamma} u+\lambda^2u=0$ are represented by linearly independent functions $\mathbb{J}_\mu$ and $\mathbb{J}_{-\mu},~{\mu}=\dfrac{\gamma+1}{2}$. Studied some properties of the functions $\mathbb{J}_\mu$, which are expressed in terms of the properties of the Bessel–Levitan j-function. Direct and inverse Bessel $\mathbb J_\mu$-transforms are introduced. Based on the $\mathbb T$-pseudo-shift operator introduced earlier, a a generalized $\mathbb T$-shift operator belonging to the Levitan class of generalized shifts, commuting with the Bessel operator $B_{-\gamma}$. A fundamental solution is found for the singular differential operator $B_{-\gamma}$ with a singularity at an arbitrary point on the semiaxis $[0,\infty).$
Keywords:
spherical symmetry, singular Bessel differential operator, Bessel transforms, generalized Levitan shift, fundamental solution.
@article{IVM_2023_7_a5,
author = {L. N. Lyakhov and Yu. N. Bulatov and S. A. Roshchupkin and E. L. Sanina},
title = {Fundamental solution of a singular {Bessel} differential operator with a negative parameter},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {52--65},
publisher = {mathdoc},
number = {7},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2023_7_a5/}
}
TY - JOUR AU - L. N. Lyakhov AU - Yu. N. Bulatov AU - S. A. Roshchupkin AU - E. L. Sanina TI - Fundamental solution of a singular Bessel differential operator with a negative parameter JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2023 SP - 52 EP - 65 IS - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2023_7_a5/ LA - ru ID - IVM_2023_7_a5 ER -
%0 Journal Article %A L. N. Lyakhov %A Yu. N. Bulatov %A S. A. Roshchupkin %A E. L. Sanina %T Fundamental solution of a singular Bessel differential operator with a negative parameter %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2023 %P 52-65 %N 7 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2023_7_a5/ %G ru %F IVM_2023_7_a5
L. N. Lyakhov; Yu. N. Bulatov; S. A. Roshchupkin; E. L. Sanina. Fundamental solution of a singular Bessel differential operator with a negative parameter. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2023), pp. 52-65. http://geodesic.mathdoc.fr/item/IVM_2023_7_a5/