Fundamental solution of a singular Bessel differential operator with a negative parameter
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2023), pp. 52-65

Voir la notice de l'article provenant de la source Math-Net.Ru

The singular differential Bessel operator $B_{-\gamma}$ with negative parameter $-\gamma0$ is considered. Solutions of the singular differential Bessel equation $B_{-\gamma} u+\lambda^2u=0$ are represented by linearly independent functions $\mathbb{J}_\mu$ and $\mathbb{J}_{-\mu},~{\mu}=\dfrac{\gamma+1}{2}$. Studied some properties of the functions $\mathbb{J}_\mu$, which are expressed in terms of the properties of the Bessel–Levitan j-function. Direct and inverse Bessel $\mathbb J_\mu$-transforms are introduced. Based on the $\mathbb T$-pseudo-shift operator introduced earlier, a a generalized $\mathbb T$-shift operator belonging to the Levitan class of generalized shifts, commuting with the Bessel operator $B_{-\gamma}$. A fundamental solution is found for the singular differential operator $B_{-\gamma}$ with a singularity at an arbitrary point on the semiaxis $[0,\infty).$
Keywords: spherical symmetry, singular Bessel differential operator, Bessel transforms, generalized Levitan shift, fundamental solution.
@article{IVM_2023_7_a5,
     author = {L. N. Lyakhov and Yu. N. Bulatov and S. A. Roshchupkin and E. L. Sanina},
     title = {Fundamental solution of a singular {Bessel} differential operator  with a negative parameter},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {52--65},
     publisher = {mathdoc},
     number = {7},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2023_7_a5/}
}
TY  - JOUR
AU  - L. N. Lyakhov
AU  - Yu. N. Bulatov
AU  - S. A. Roshchupkin
AU  - E. L. Sanina
TI  - Fundamental solution of a singular Bessel differential operator  with a negative parameter
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2023
SP  - 52
EP  - 65
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2023_7_a5/
LA  - ru
ID  - IVM_2023_7_a5
ER  - 
%0 Journal Article
%A L. N. Lyakhov
%A Yu. N. Bulatov
%A S. A. Roshchupkin
%A E. L. Sanina
%T Fundamental solution of a singular Bessel differential operator  with a negative parameter
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2023
%P 52-65
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2023_7_a5/
%G ru
%F IVM_2023_7_a5
L. N. Lyakhov; Yu. N. Bulatov; S. A. Roshchupkin; E. L. Sanina. Fundamental solution of a singular Bessel differential operator  with a negative parameter. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2023), pp. 52-65. http://geodesic.mathdoc.fr/item/IVM_2023_7_a5/