Solution of three systems of functional equations related to complex, double and dual numbers
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2023), pp. 42-51.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article solves three special systems of functional equations arising in the problem of embedding of two-metric phenomenologically symmetric geometries of two sets of rank (3,2) associated with complex, double and dual numbers into a two-metric phenomenologically symmetric geometry of two sets of rank (4,2), which is affine group of transformations on the plane. We are looking for non-degenerate solutions of these systems, which in general are very difficult to find. The problem of determining the set of solutions to these systems, associated with a finite number of Jordan forms of second-order matrices, turned out to be much simpler and more meaningful in the mathematical sense. The solutions obtained have a direct connection with complex, double and dual numbers.
Keywords: geometry of two sets, functional equation, complex, double and dual numbers.
Mots-clés : Jordan form of matrices
@article{IVM_2023_7_a4,
     author = {V. A. Kyrov and G. G. Mikhailichenko},
     title = {Solution of three systems of functional equations related to complex, double and dual numbers},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {42--51},
     publisher = {mathdoc},
     number = {7},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2023_7_a4/}
}
TY  - JOUR
AU  - V. A. Kyrov
AU  - G. G. Mikhailichenko
TI  - Solution of three systems of functional equations related to complex, double and dual numbers
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2023
SP  - 42
EP  - 51
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2023_7_a4/
LA  - ru
ID  - IVM_2023_7_a4
ER  - 
%0 Journal Article
%A V. A. Kyrov
%A G. G. Mikhailichenko
%T Solution of three systems of functional equations related to complex, double and dual numbers
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2023
%P 42-51
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2023_7_a4/
%G ru
%F IVM_2023_7_a4
V. A. Kyrov; G. G. Mikhailichenko. Solution of three systems of functional equations related to complex, double and dual numbers. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2023), pp. 42-51. http://geodesic.mathdoc.fr/item/IVM_2023_7_a4/

[1] Mikhailichenko G.G., Gruppovaya simmetriya fizicheskikh struktur, Barn. gos. ped. un-t, Barnaul, 2003

[2] Mikhailichenko G.G., “Dvumetricheskie fizicheskie struktury ranga $(n+1,2)$”, Sib. matem. zhurn., 34:3 (1993), 132–143 | MR | Zbl

[3] Kyrov V.A., “O vlozhenii dvumetricheskikh fenomenologicheski simmetrichnykh geometrii”, Vestn. Tomsk. gos. un-ta. Matem. i mekh., 2018, no. 56, 5–16 | DOI | MR | Zbl

[4] Bogdanova R.A., Mikhailichenko G.G., “Posledovatelnoe po rangu $(n+1,2)$ vlozhenie dvumetricheskikh fenomenologicheski simmetrichnykh geometrii dvukh mnozhestv”, Izv. vuzov. Matem., 2020, no. 6, 9–14 | DOI | Zbl

[5] Kyrov V.A., Mikhailichenko G.G., “Nevyrozhdennye kanonicheskie resheniya odnoi sistemy funktsionalnykh uravnenii”, Izv. vuzov. Matem., 2021, no. 8, 46–55 | DOI | Zbl

[6] Mikhailichenko G.G., Kyrov V.A., “Giperkompleksnye chisla v nekotorykh geometriyakh dvukh mnozhestv. I”, Izv. vuzov. Matem., 2017, no. 7, 19–29 | Zbl

[7] Kyrov V.A., “Giperkompleksnye chisla v nekotorykh geometriyakh dvukh mnozhestv. II”, Izv. vuzov. Matem., 2020, no. 5, 39–54 | DOI | Zbl

[8] Kyrov Vladimir A., “Commutative hypercomplex numbers and the geometry of two sets”, Zhurn. SFU. Ser. Matem. i fiz., 13:3 (2020), 373–382 | DOI | MR | Zbl

[9] Kostrikin A.I., Vvedenie v algebru, Nauka, M., 1977 | MR