Solvability of iterative system of fractional order differential equations with non-homogeneous boundary conditions
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2023), pp. 74-88.

Voir la notice de l'article provenant de la source Math-Net.Ru

The fixed point theorem of Guo–Krasnosel'skii is applied in this paper to find the intervals of the parameters $\lambda_1,\lambda_2,\ldots,\lambda_m$ that have a positive solution to an iterative system of $n^\text{th}$ order fractional differential equation with three-point boundary conditions with a non-homogeneous term.
Keywords: fractional order derivative, iterative system, non-homogeneous three-point, boundary value problem, eigenvalues, cone
Mots-clés : kernel, positive solution.
@article{IVM_2023_6_a6,
     author = {K. R. Prasad and N. Sreedhar and M. Rashmita},
     title = {Solvability of iterative system of fractional order differential equations with non-homogeneous boundary conditions},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {74--88},
     publisher = {mathdoc},
     number = {6},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2023_6_a6/}
}
TY  - JOUR
AU  - K. R. Prasad
AU  - N. Sreedhar
AU  - M. Rashmita
TI  - Solvability of iterative system of fractional order differential equations with non-homogeneous boundary conditions
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2023
SP  - 74
EP  - 88
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2023_6_a6/
LA  - ru
ID  - IVM_2023_6_a6
ER  - 
%0 Journal Article
%A K. R. Prasad
%A N. Sreedhar
%A M. Rashmita
%T Solvability of iterative system of fractional order differential equations with non-homogeneous boundary conditions
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2023
%P 74-88
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2023_6_a6/
%G ru
%F IVM_2023_6_a6
K. R. Prasad; N. Sreedhar; M. Rashmita. Solvability of iterative system of fractional order differential equations with non-homogeneous boundary conditions. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2023), pp. 74-88. http://geodesic.mathdoc.fr/item/IVM_2023_6_a6/

[1] Singh J., Hristov J. Y., Hammouch Z. (eds.), New Trends in Fractional Differential Equations with Real-World Applications in Physics, Frontiers Media SA, Lausanne, 2020

[2] Nishimoto K. N., Fractional Calculus and its Applications, Nihon Univ., Koriyama, 1990 | Zbl

[3] Miller K. S., Ross B., An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley, New York, 1993 | MR | Zbl

[4] Podlubny I., Fractional Differential Equations, Academic Press, New York, 1999 | MR | Zbl

[5] Kilbas A. A., Srivastava H. M., Trujillo J. J., Theory and Applications of Fractional Differential Equations, Elsevier, Boston, 2006 | MR | Zbl

[6] Lopes A. M., Chen L., “Fractional Order Systems and Their Applications”, Fractal and Fract., 6:7 (2022), 1–3 | DOI

[7] Henderson J., Ntouyas S. K., “Positive Solutions for System of $n^\text{th}$ Order Three-point Nonlocal Boundary Value Problems”, Electron. J. Qual. Theory Differ. Equat., 2007:18 (2007), 1–12 | MR

[8] Henderson J., Ntouyas S. K., Purnaras I. K., “Positive solutions for systems of generalized three-point nonlinear boundary value problems”, Comment. Math. Univ. Carolin., 49:1 (2008), 79–91 | MR | Zbl

[9] Henderson J., Ntouyas S. K., Purnaras I. K., “Positive solutions for systems of second order four-point nonlinear boundary value problems”, Comm. Appl. Anal., 12 (2008), 29–40 | MR | Zbl

[10] Prasad K. R., Sreedhar N., Kumar K. R., “Solvability of iterative systems of three-point boundary value problems”, TWMS J. App. Eng. Math., 3:2 (2013), 147–159 | MR | Zbl

[11] Prasad K. R., Rashmita M., Sreedhar N., “Solvability of higher order three-point iterative systems”, Ufimsk. matem. zhurn., 12:3 (2020), 109–124 | MR | Zbl

[12] Sreedhar N., Kanakayya N., Prasad K. R., “Solvability of Higher Order Iterative System with Non-Homogeneous Integral Boundary Conditions”, Contemporary Math., 3, no. 2, 2022, 141–161

[13] Prasad K. R., Krushna B. M.B., “Eigenvalues for iterative systems of Sturm–Liouville fractional order two-point boundary value problems”, Frac. Calc. Appl. Anal., 17, no. 3 (2014), 638–653 | DOI | MR | Zbl

[14] Prasad K. R., Krushna B. M.B., Sreedhar N., “Eigenvalues for Iterative Systems of $(n, p)$-Type Fractional Order Boundary Value Problem”, Int. J. Anal. Appl., 5:2 (2014), 136–146 | Zbl

[15] Prasad K. R., Krushna B. M.B., “Positive solutions to iterative systems of fractional order three-point boundary value problems with Riemann–Liouville derivative”, Frac. Differ. Calc., 5:2 (2015), 137–150 | MR | Zbl

[16] Guo D., Lakshmikantham V., Nonlinear Problems in Abstract Cones, Academic Press, Orlando, 1988 | MR | Zbl

[17] Krasnosel'skii M. A., Positive Solutions of Operator Equations, P. Noordhoff, Groningen, 1964 | MR | Zbl