Involutions in algebras of upper-triangular matrices
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2023), pp. 11-30
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper we classify up to equivalency involutions of first kind in algebras of upper-triangular matrices over commutative rings. In case of a field $F$ of characteristics $2$ we obtain necessary and sufficient conditions for finiteness of the set of invlolutions equivalency classes of $T_{n}(F)$.
Keywords:
involution, equivalency of invloutions, algebra of upper-triangular matrices.
@article{IVM_2023_6_a1,
author = {I. A. Kulguskin and D. T. Tapkin},
title = {Involutions in algebras of upper-triangular matrices},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {11--30},
publisher = {mathdoc},
number = {6},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2023_6_a1/}
}
I. A. Kulguskin; D. T. Tapkin. Involutions in algebras of upper-triangular matrices. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2023), pp. 11-30. http://geodesic.mathdoc.fr/item/IVM_2023_6_a1/