On idempotents of semigroup varieties of $m$-groups
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2023), pp. 3-10
Voir la notice de l'article provenant de la source Math-Net.Ru
An m-group is a pair $(G,\varphi),$ where $G$ is an $\ell$-group and $\varphi$ is a decreasing order two automorphism of $G$. An $m$-group can be regarded as an algebraic system of signature $m$ and it is obvious that the $m$-groups form a variety in this signature. The set $M$ of varieties of all $m$-groups is a semigroup with respect to natural defined operation of multiplication of varieties. In this article we will give full description of idempotents of $M$.
Mots-clés :
$m$-group
Keywords: presentation, variety, wreath product.
Keywords: presentation, variety, wreath product.
@article{IVM_2023_6_a0,
author = {N. V. Bayanova and A. V. Zenkov},
title = {On idempotents of semigroup varieties of $m$-groups},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {3--10},
publisher = {mathdoc},
number = {6},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2023_6_a0/}
}
N. V. Bayanova; A. V. Zenkov. On idempotents of semigroup varieties of $m$-groups. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2023), pp. 3-10. http://geodesic.mathdoc.fr/item/IVM_2023_6_a0/