On idempotents of semigroup varieties of $m$-groups
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2023), pp. 3-10.

Voir la notice de l'article provenant de la source Math-Net.Ru

An m-group is a pair $(G,\varphi),$ where $G$ is an $\ell$-group and $\varphi$ is a decreasing order two automorphism of $G$. An $m$-group can be regarded as an algebraic system of signature $m$ and it is obvious that the $m$-groups form a variety in this signature. The set $M$ of varieties of all $m$-groups is a semigroup with respect to natural defined operation of multiplication of varieties. In this article we will give full description of idempotents of $M$.
Mots-clés : $m$-group
Keywords: presentation, variety, wreath product.
@article{IVM_2023_6_a0,
     author = {N. V. Bayanova and A. V. Zenkov},
     title = {On idempotents of semigroup varieties of $m$-groups},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {3--10},
     publisher = {mathdoc},
     number = {6},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2023_6_a0/}
}
TY  - JOUR
AU  - N. V. Bayanova
AU  - A. V. Zenkov
TI  - On idempotents of semigroup varieties of $m$-groups
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2023
SP  - 3
EP  - 10
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2023_6_a0/
LA  - ru
ID  - IVM_2023_6_a0
ER  - 
%0 Journal Article
%A N. V. Bayanova
%A A. V. Zenkov
%T On idempotents of semigroup varieties of $m$-groups
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2023
%P 3-10
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2023_6_a0/
%G ru
%F IVM_2023_6_a0
N. V. Bayanova; A. V. Zenkov. On idempotents of semigroup varieties of $m$-groups. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2023), pp. 3-10. http://geodesic.mathdoc.fr/item/IVM_2023_6_a0/

[1] Kopytov V. M., Reshotochno uporyadochennye gruppy, Nauka, M., 1984

[2] Lorenzen P., “Über halbgeordnete Gruppen”, Arsh.Math., 2 (1949), 66–70 | MR

[3] Lorenzen P., “Über halbgeordnete Gruppen”, Math.Z., 52:5 (1949), 483–526 | MR | Zbl

[4] Giraudet M., Lukas F., “Groupes á motié ordonnés”, Fundam.Math., 139:2 (1991), 75–89 | DOI | MR | Zbl

[5] Giraudet M., Rachu̇nek J., “Varieties of half lattice-ordered groups of monotonic permutations of chains”, Czech. Math. J., 49 (1999), 743–766 | DOI | MR | Zbl

[6] Kopytov V. M., Rakhunek I., “Naibolshee sobstvennoe mnogoobrazie $m$-grupp”, Algebra i logika, 42:5 (2003), 624–635 | MR | Zbl

[7] Zenkov A. V., Isaeva O. V., “On variety $\mathcal{N}$ of normal valued $m$-groups”, Sib. elektr. matem. izv., 18:1 (2021), 54–60 | MR

[8] Zenkov A. V., “Predstavleniya, proizvedeniya i mnogoobraziya $m$-grupp”, Sib. matem. zhurn., 63:4 (2022), 860–865

[9] Glass A. M.W., Holland W.Ch., McCleary S. H., “The structure of $\ell$-group varieties”, Algebra Universalis, 10 (1980), 1–20 | DOI | MR | Zbl

[10] Kurosh A. G., Teoriya grupp, Nauka, M., 1967 | MR

[11] Kopytov V. M., Medvedev N.Ya., The Theory of Lattice-Ordered Groups, Mathematics and Its Applications, 307, Kluwer Academic Publ., Dordrecht, 1994 | MR | Zbl

[12] Kon P., Universalnaya algebra, Mir, M., 1968 | MR

[13] Zenkov A. V., “O $m$-tranzitivnykh gruppakh”, Matem. zametki, 94:1 (2013), 151–153 | DOI | Zbl

[14] Zenkov A. V., Isaeva O. V., “Dva voprosa teorii $m$-grupp”, Sib. matem. zhurn., 55:6 (2014), 1279–1282 | MR | Zbl

[15] Zenkov A. V., Isaeva O. V., “Obobschennye spleteniya $m$-grupp”, Algebra i logika, 58:2 (2019), 167–178 | MR | Zbl

[16] Pinusa A. G., Poroshenko E. N., Sudoplatova S. V. (red.), Erlagolskaya tetrad. Izbrannye otkrytye voprosy po algebre i teorii modelei, postavlennye uchastnikami Erlagolskikh shkol-konferentsii, Izd-vo NGTU, Novosibirsk, 2018