On idempotents of semigroup varieties of $m$-groups
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2023), pp. 3-10

Voir la notice de l'article provenant de la source Math-Net.Ru

An m-group is a pair $(G,\varphi),$ where $G$ is an $\ell$-group and $\varphi$ is a decreasing order two automorphism of $G$. An $m$-group can be regarded as an algebraic system of signature $m$ and it is obvious that the $m$-groups form a variety in this signature. The set $M$ of varieties of all $m$-groups is a semigroup with respect to natural defined operation of multiplication of varieties. In this article we will give full description of idempotents of $M$.
Mots-clés : $m$-group
Keywords: presentation, variety, wreath product.
@article{IVM_2023_6_a0,
     author = {N. V. Bayanova and A. V. Zenkov},
     title = {On idempotents of semigroup varieties of $m$-groups},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {3--10},
     publisher = {mathdoc},
     number = {6},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2023_6_a0/}
}
TY  - JOUR
AU  - N. V. Bayanova
AU  - A. V. Zenkov
TI  - On idempotents of semigroup varieties of $m$-groups
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2023
SP  - 3
EP  - 10
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2023_6_a0/
LA  - ru
ID  - IVM_2023_6_a0
ER  - 
%0 Journal Article
%A N. V. Bayanova
%A A. V. Zenkov
%T On idempotents of semigroup varieties of $m$-groups
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2023
%P 3-10
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2023_6_a0/
%G ru
%F IVM_2023_6_a0
N. V. Bayanova; A. V. Zenkov. On idempotents of semigroup varieties of $m$-groups. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2023), pp. 3-10. http://geodesic.mathdoc.fr/item/IVM_2023_6_a0/