Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2023_5_a9, author = {S. R. Nasyrov and V. G. Nguyen}, title = {Asymptotics of the exterior conformal modulus of a quadrilateral under stretching map}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {89--95}, publisher = {mathdoc}, number = {5}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2023_5_a9/} }
TY - JOUR AU - S. R. Nasyrov AU - V. G. Nguyen TI - Asymptotics of the exterior conformal modulus of a quadrilateral under stretching map JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2023 SP - 89 EP - 95 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2023_5_a9/ LA - ru ID - IVM_2023_5_a9 ER -
S. R. Nasyrov; V. G. Nguyen. Asymptotics of the exterior conformal modulus of a quadrilateral under stretching map. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2023), pp. 89-95. http://geodesic.mathdoc.fr/item/IVM_2023_5_a9/
[1] Alfors L.V., Lektsii po kvazikonformnym otobrazheniyam, Mir, M., 1969
[2] Kühnau R., “The conformal module of quadrilaterals and of rings”, Handbook of complex analysis: geometric function theory, v. 2, Elsevier, Sci. B.V., Amsterdam, 2005, 99–129 | DOI | MR | Zbl
[3] Goluzin G.M., Geometricheskaya teoriya funktsii kompleksnogo peremennogo, 2-e izd., Nauka, M., 1966 | MR
[4] Dubinin V.N., Emkosti kondensatorov i simmetrizatsiya v geometricheskoi teorii funktsii kompleksnogo peremennogo, Dalnauka, Vladivostok, 2009
[5] Dautova D.N., Nasyrov S.R., “Asimptotika modulei zerkalno simmetrichnykh dvusvyaznykh oblastei pri rastyazhenii”, Matem. zametki, 103:4 (2018), 503–518 | DOI | MR | Zbl
[6] Dautova D.N., Nasyrov S.R., “Asymptotics of conformal module of nonsymmetric doubly connected domain under unbounded stretching along the real axis”, Lobachevskii J. Math., 40:9 (2019), 1268–1274 | DOI | MR | Zbl
[7] Nasyrov S.R., “Riemann–Schwarz reflection principle and asymptotics of modules of rectangular frames”, Comput. Methods Funct. Theory, 15:1 (2015), 59–74 | DOI | MR | Zbl
[8] Nasyrov S.R., Nguyen V.G., “Asymptotics of the conformal modulus of unbounded symmetric doubly-connected domain under stretching”, Lobachevskii J. Math., 42:12 (2021), 2895–2904 | DOI | MR | Zbl
[9] Nguyen G.V., Nasyrov S.R., “Asymptotics of the conformal modulus of a nonsymmetric unbounded doubly-connected domain under stretching”, Lobachevskii J. Math., 43:10 (2022), 2977–2988 | DOI | MR | Zbl
[10] Bickley W.G., “Two-dimensional potential problems for the space outside a rectangle”, Proc. London Math. Soc., 2:1 (1934), 82–105 | DOI | MR | Zbl
[11] Duren P., Pfaltzgraff J., “Robin capacity and extremal length”, J. Math. Anal. Appl., 179:1 (1993), 110–119 | DOI | MR | Zbl
[12] Vuorinen M., Zhang X., “On exterior moduli of quadrilaterals and special functions”, J. Fixed Point Theory Appl., 13:1 (2013), 215–230 | DOI | MR | Zbl
[13] Nasyrov S., Sugawa T., Vuorinen M., “Moduli of quadrilaterals and quasiconformal reflection”, J. Math. Anal. Appl., 524:2 (2023), 27092 | DOI | MR
[14] Dyutin A., Nguyen G.V., “Asymptotics of the exterior conformal modulus of a symmetric quadrilateral under stretching map”, Lobachevskii J. Math., 44:4 (2023), 1280–1289
[15] Papamichael N., Stylianopoulos N., Numerical conformal mapping. Domain decomposition and the mapping of quadrilaterals, World Sci. Publ. Co. Ptc. Ltd., Hackensack, NJ, 2010 | MR | Zbl