Asymptotics of the exterior conformal modulus of a quadrilateral under stretching map
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2023), pp. 89-95.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we focus on studying the distortion of the exterior conformal modulus of a quadrilateral of sufficiently arbitrary form under the stretching map along the abscissa axis with coefficient $H\to\infty$. By using the properties of quasiconformal transformations and taking into account some facts from the theory of elliptic integrals, we confirm that the asymptotic behavior of this modulus does not depend on the shape of the boundary of the quadrilateral. Especially, it is equivalent to $(1/\pi)\log H$ as $H\to\infty$. Therefore, we give a solution to the Vuorinen problem for the exterior modulus of a sufficiently arbitrary quadrilateral.
Keywords: quadrilateral, exterior conformal modulus, quasiconformal mapping
Mots-clés : conformal modulus, convergence of domains to a kernel.
@article{IVM_2023_5_a9,
     author = {S. R. Nasyrov and V. G. Nguyen},
     title = {Asymptotics of the exterior conformal modulus of a quadrilateral under stretching map},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {89--95},
     publisher = {mathdoc},
     number = {5},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2023_5_a9/}
}
TY  - JOUR
AU  - S. R. Nasyrov
AU  - V. G. Nguyen
TI  - Asymptotics of the exterior conformal modulus of a quadrilateral under stretching map
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2023
SP  - 89
EP  - 95
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2023_5_a9/
LA  - ru
ID  - IVM_2023_5_a9
ER  - 
%0 Journal Article
%A S. R. Nasyrov
%A V. G. Nguyen
%T Asymptotics of the exterior conformal modulus of a quadrilateral under stretching map
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2023
%P 89-95
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2023_5_a9/
%G ru
%F IVM_2023_5_a9
S. R. Nasyrov; V. G. Nguyen. Asymptotics of the exterior conformal modulus of a quadrilateral under stretching map. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2023), pp. 89-95. http://geodesic.mathdoc.fr/item/IVM_2023_5_a9/

[1] Alfors L.V., Lektsii po kvazikonformnym otobrazheniyam, Mir, M., 1969

[2] Kühnau R., “The conformal module of quadrilaterals and of rings”, Handbook of complex analysis: geometric function theory, v. 2, Elsevier, Sci. B.V., Amsterdam, 2005, 99–129 | DOI | MR | Zbl

[3] Goluzin G.M., Geometricheskaya teoriya funktsii kompleksnogo peremennogo, 2-e izd., Nauka, M., 1966 | MR

[4] Dubinin V.N., Emkosti kondensatorov i simmetrizatsiya v geometricheskoi teorii funktsii kompleksnogo peremennogo, Dalnauka, Vladivostok, 2009

[5] Dautova D.N., Nasyrov S.R., “Asimptotika modulei zerkalno simmetrichnykh dvusvyaznykh oblastei pri rastyazhenii”, Matem. zametki, 103:4 (2018), 503–518 | DOI | MR | Zbl

[6] Dautova D.N., Nasyrov S.R., “Asymptotics of conformal module of nonsymmetric doubly connected domain under unbounded stretching along the real axis”, Lobachevskii J. Math., 40:9 (2019), 1268–1274 | DOI | MR | Zbl

[7] Nasyrov S.R., “Riemann–Schwarz reflection principle and asymptotics of modules of rectangular frames”, Comput. Methods Funct. Theory, 15:1 (2015), 59–74 | DOI | MR | Zbl

[8] Nasyrov S.R., Nguyen V.G., “Asymptotics of the conformal modulus of unbounded symmetric doubly-connected domain under stretching”, Lobachevskii J. Math., 42:12 (2021), 2895–2904 | DOI | MR | Zbl

[9] Nguyen G.V., Nasyrov S.R., “Asymptotics of the conformal modulus of a nonsymmetric unbounded doubly-connected domain under stretching”, Lobachevskii J. Math., 43:10 (2022), 2977–2988 | DOI | MR | Zbl

[10] Bickley W.G., “Two-dimensional potential problems for the space outside a rectangle”, Proc. London Math. Soc., 2:1 (1934), 82–105 | DOI | MR | Zbl

[11] Duren P., Pfaltzgraff J., “Robin capacity and extremal length”, J. Math. Anal. Appl., 179:1 (1993), 110–119 | DOI | MR | Zbl

[12] Vuorinen M., Zhang X., “On exterior moduli of quadrilaterals and special functions”, J. Fixed Point Theory Appl., 13:1 (2013), 215–230 | DOI | MR | Zbl

[13] Nasyrov S., Sugawa T., Vuorinen M., “Moduli of quadrilaterals and quasiconformal reflection”, J. Math. Anal. Appl., 524:2 (2023), 27092 | DOI | MR

[14] Dyutin A., Nguyen G.V., “Asymptotics of the exterior conformal modulus of a symmetric quadrilateral under stretching map”, Lobachevskii J. Math., 44:4 (2023), 1280–1289

[15] Papamichael N., Stylianopoulos N., Numerical conformal mapping. Domain decomposition and the mapping of quadrilaterals, World Sci. Publ. Co. Ptc. Ltd., Hackensack, NJ, 2010 | MR | Zbl