On the best simultaneous approximation of functions in the Bergman space $B_{2}$
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2023), pp. 71-81.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the work extremal problems related to the best simultaneous polynomial approximation of analytic functions in the unit disc belonging to the Bergman space $B_{2}$ is studied. Here, a number of exact theorems and the exact values of the upper bounds of the best joint approximations of functions and its consecutive derivatives polynomials and their corresponding derivatives on some classes of complex functions belonging to the Bergman space $B_{2}$ are obtained.
Keywords: extremal tasks, simultaneous approximation of functions, modulus of continuity, upper bound, Bergman space.
@article{IVM_2023_5_a7,
     author = {Kh. M. Khuromonov},
     title = {On the best simultaneous approximation of functions in the {Bergman} space $B_{2}$},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {71--81},
     publisher = {mathdoc},
     number = {5},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2023_5_a7/}
}
TY  - JOUR
AU  - Kh. M. Khuromonov
TI  - On the best simultaneous approximation of functions in the Bergman space $B_{2}$
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2023
SP  - 71
EP  - 81
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2023_5_a7/
LA  - ru
ID  - IVM_2023_5_a7
ER  - 
%0 Journal Article
%A Kh. M. Khuromonov
%T On the best simultaneous approximation of functions in the Bergman space $B_{2}$
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2023
%P 71-81
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2023_5_a7/
%G ru
%F IVM_2023_5_a7
Kh. M. Khuromonov. On the best simultaneous approximation of functions in the Bergman space $B_{2}$. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2023), pp. 71-81. http://geodesic.mathdoc.fr/item/IVM_2023_5_a7/

[1] Dveirin M.Z., Chebanenko I.V., “O polinomialnoi approksimatsii v banakhovykh prostranstvakh analiticheskikh funktsii”, Teoriya otobrazhenii i priblizhenie funktsii, Naukova dumka, Kiev, 1983

[2] Horowitz Charles, “Zeros of functions in Bergman Space”, Bull. Amer. Math. Soc., 80:4 (1974), 713–714 | DOI | MR | Zbl

[3] Vakarchuk S.B., “O poperechnikakh nekotorykh klassov analiticheskikh v edinichnom kruge funktsii I”, Ukr. matem. zhurn., 42:7 (1990), 873–881 | MR | Zbl

[4] Vakarchuk S.B., “O poperechnikakh nekotorykh klassov analiticheskikh v edinichnom kruge funktsii II”, Ukr. matem. zhurn., 42:8 (1990), 1019–1026 | MR | Zbl

[5] Vakarchuk S.B., “Nailuchshie lineinye metody priblizheniya i poperechniki klassov analiticheskikh v kruge funktsii”, Matem. zametki, 57:1 (1995), 30–39 | MR

[6] Vakarchuk S.B., “O nailuchshikh lineinykh metodakh priblizheniya i poperechnikakh nekotorykh klassov analiticheskikh funktsii”, Matem. zametki, 65:2 (1999), 186–193 | DOI | Zbl

[7] Vakarchuk S.B., “O neravenstvakh tipa Kolmogorova dlya nekotorykh banakhovykh prostranstv analiticheskikh funktsii”, Nekotorye voprosy analiza i differentsialnoi topologii, Sb. nauchn. tr., Naukova dumka, Kiev, 1988

[8] Shabozov M.Sh., Saidusainov M.S., “Verkhnie grani priblizheniya nekotorykh klassov funktsii kompleksnoi peremennoi ryadami Fure v prostranstve $L_{2}$ i znacheniya $n$-poperechnikov”, Matem. zametki, 103:4 (2018), 617–631 | DOI | Zbl

[9] Shabozov M.Sh., Saidusainov M.S., “Srednekvadraticheskoe priblizhenie funktsii kompleksnogo peremennogo summami Fure po ortogonalnym sistemam”, Tr. IMM UrO RAN, 25, no. 2, 2019, 258–272

[10] Khuromonov Kh.M., Shabozov M.Sh., “Neravenstva tipa Dzheksona–Stechkina mezhdu nailuchshimi sovmestnymi polinomialnymi priblizheniyami i odnoi kharakteristikoi gladkosti v prostranstve Bergmana”, Vladikavkazsk. matem. zhurn., 24:1 (2022), 109–120 | DOI | MR

[11] Malozemov V.N., Sovmestnoe priblizhenie funktsii i ee proizvodnykh, Izd-vo LGU, 1973

[12] Vakarchuk S.B., Zabutnaya V.I., “Neravenstva tipa Dzheksona–Stechkina dlya spetsialnykh modulei nepreryvnosti i poperechniki funktsionalnykh klassov v prostranstve $L_{2}$”, Matem. zametki, 92:4 (2012), 497–514 | DOI | Zbl

[13] Shabozov M.Sh., Yusupov G.A., Zargarov Dzh.Dzh., “O nailuchshei sovmestnoi polinomialnoi approksimatsii funktsii i ikh proizvodnykh v prostranstve Khardi”, Tr. IMM UrO RAN, 27, no. 4, 2021, 239–254

[14] Smirnov V.I., Lebedev N.A., Konstruktivnaya teoriya funktsii kompleksnogo peremennogo, Nauka, M.-L., 1964 | MR

[15] Taikov L.V., “Neravenstva, soderzhaschie nailuchshie priblizheniya i modul nepreryvnosti funktsii iz $L_2$”, Matem. zametki, 20:3 (1976), 433–438 | MR | Zbl