On fractional powers of the Schr\"odinger operator with a potential singular on manifolds
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2023), pp. 11-19
Voir la notice de l'article provenant de la source Math-Net.Ru
Sufficient conditions on the degree of summability $p$ are found under which the Sсhrödinger operator with a potential singular on manifolds is a positive operator in Banach spaces $L_p$, and it is also shown that the domains of different degrees of this operator form an interpolation pair. In addition, we establish sufficient conditions on $p$ that ensure that fractional powers $\sigma$, $0 \sigma 1$ of the operator are bounded from $W_p^{2\sigma}$ to $L_p$.
Keywords:
Fractional power, the Schrödinger operator, positive operator, Banach space.
@article{IVM_2023_5_a1,
author = {T. N. Alikulov and A. R. Khalmukhamedov},
title = {On fractional powers of the {Schr\"odinger} operator with a potential singular on manifolds},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {11--19},
publisher = {mathdoc},
number = {5},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2023_5_a1/}
}
TY - JOUR AU - T. N. Alikulov AU - A. R. Khalmukhamedov TI - On fractional powers of the Schr\"odinger operator with a potential singular on manifolds JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2023 SP - 11 EP - 19 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2023_5_a1/ LA - ru ID - IVM_2023_5_a1 ER -
%0 Journal Article %A T. N. Alikulov %A A. R. Khalmukhamedov %T On fractional powers of the Schr\"odinger operator with a potential singular on manifolds %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2023 %P 11-19 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2023_5_a1/ %G ru %F IVM_2023_5_a1
T. N. Alikulov; A. R. Khalmukhamedov. On fractional powers of the Schr\"odinger operator with a potential singular on manifolds. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2023), pp. 11-19. http://geodesic.mathdoc.fr/item/IVM_2023_5_a1/