On fractional powers of the Schr\"odinger operator with a potential singular on manifolds
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2023), pp. 11-19

Voir la notice de l'article provenant de la source Math-Net.Ru

Sufficient conditions on the degree of summability $p$ are found under which the Sсhrödinger operator with a potential singular on manifolds is a positive operator in Banach spaces $L_p$, and it is also shown that the domains of different degrees of this operator form an interpolation pair. In addition, we establish sufficient conditions on $p$ that ensure that fractional powers $\sigma$, $0 \sigma 1$ of the operator are bounded from $W_p^{2\sigma}$ to $L_p$.
Keywords: Fractional power, the Schrödinger operator, positive operator, Banach space.
@article{IVM_2023_5_a1,
     author = {T. N. Alikulov and A. R. Khalmukhamedov},
     title = {On fractional powers of the {Schr\"odinger} operator with a potential singular on manifolds},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {11--19},
     publisher = {mathdoc},
     number = {5},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2023_5_a1/}
}
TY  - JOUR
AU  - T. N. Alikulov
AU  - A. R. Khalmukhamedov
TI  - On fractional powers of the Schr\"odinger operator with a potential singular on manifolds
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2023
SP  - 11
EP  - 19
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2023_5_a1/
LA  - ru
ID  - IVM_2023_5_a1
ER  - 
%0 Journal Article
%A T. N. Alikulov
%A A. R. Khalmukhamedov
%T On fractional powers of the Schr\"odinger operator with a potential singular on manifolds
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2023
%P 11-19
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2023_5_a1/
%G ru
%F IVM_2023_5_a1
T. N. Alikulov; A. R. Khalmukhamedov. On fractional powers of the Schr\"odinger operator with a potential singular on manifolds. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2023), pp. 11-19. http://geodesic.mathdoc.fr/item/IVM_2023_5_a1/