On fractional powers of the Schr\"odinger operator with a potential singular on manifolds
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2023), pp. 11-19.

Voir la notice de l'article provenant de la source Math-Net.Ru

Sufficient conditions on the degree of summability $p$ are found under which the Sсhrödinger operator with a potential singular on manifolds is a positive operator in Banach spaces $L_p$, and it is also shown that the domains of different degrees of this operator form an interpolation pair. In addition, we establish sufficient conditions on $p$ that ensure that fractional powers $\sigma$, $0 \sigma 1$ of the operator are bounded from $W_p^{2\sigma}$ to $L_p$.
Keywords: Fractional power, the Schrödinger operator, positive operator, Banach space.
@article{IVM_2023_5_a1,
     author = {T. N. Alikulov and A. R. Khalmukhamedov},
     title = {On fractional powers of the {Schr\"odinger} operator with a potential singular on manifolds},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {11--19},
     publisher = {mathdoc},
     number = {5},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2023_5_a1/}
}
TY  - JOUR
AU  - T. N. Alikulov
AU  - A. R. Khalmukhamedov
TI  - On fractional powers of the Schr\"odinger operator with a potential singular on manifolds
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2023
SP  - 11
EP  - 19
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2023_5_a1/
LA  - ru
ID  - IVM_2023_5_a1
ER  - 
%0 Journal Article
%A T. N. Alikulov
%A A. R. Khalmukhamedov
%T On fractional powers of the Schr\"odinger operator with a potential singular on manifolds
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2023
%P 11-19
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2023_5_a1/
%G ru
%F IVM_2023_5_a1
T. N. Alikulov; A. R. Khalmukhamedov. On fractional powers of the Schr\"odinger operator with a potential singular on manifolds. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2023), pp. 11-19. http://geodesic.mathdoc.fr/item/IVM_2023_5_a1/

[1] Ilin V.A., “Yadra drobnogo poryadka”, Matem. sb., 41 (83):4 (1957), 459–480 | Zbl

[2] Alimov Sh.A., “Drobnye stepeni ellipticheskikh operatorov i izomorfizm klassov differentsiruemykh funktsii”, Differents. uravneniya, 8:9 (1972), 1609–1626 | MR | Zbl

[3] Khalmukhamedov A.R., “Complex powers of the Schrödinger operator with singular potential”, Amer. Math. Soc. Contemporary Math., 672 (2016), 205–215 | DOI | MR | Zbl

[4] Kostin V.A., Nebolsina M.N., “O korrektnoi razreshimosti kraevykh zadach dlya uravneniya vtorogo poryadka”, Dokl. RAN, 428:1 (2009), 20–22 | Zbl

[5] Balakrishnan A.V., “An operational calculus for infinitesimal generators of semigroups”, Trans. Amer. Math. Soc., 91 (1959), 330–353 | MR | Zbl

[6] Balakrishnan A.V., “Fractional powers of closed operators and the semi-groups generated by them”, Pacif. J. Math., 10:2 (1960), 419–437 | DOI | MR | Zbl

[7] Krasnoselskii M.A., Sobolevskii P.E., “Drobnye stepeni operatorov, deistvuyuschikh v banakhovykh prostranstvakh”, Dokl. AN SSSR, 129:3 (1959), 499–502 | Zbl

[8] Kato T., “Note on fractional powers of linear operators”, Proc. Japan Acad., 1960, no. 36, 94–96 | MR | Zbl

[9] Alimov Sh., “Complex powers of the Schrödinger operator with singular potential”, Eurasian J. Math., 2007, no. 2, 4–12

[10] Alimov Sh.A., Khalmukhamedov A.R., “Otsenki spektralnoi funktsii operatora Shrëdingera s potentsialom, udovletvoryayuschim usloviyu Kato”, Vestn. NUUz., 2005, no. 3, 46–50

[11] Krasnoselskii M.A., Zabreiko P.P., Pustylnik P.E., Sobolevskii P.E., Integralnye operatory v prostranstvakh summiruemykh funktsii, Nauka, M., 1966 | MR

[12] Tribel Kh., Teoriya interpolyatsii, funktsionalnye prostranstva, differentsialnye operatory, Mir, M., 1980

[13] Khalmukhamedov A.R., Alikulov T.N., “O mnimykh stepenyakh operatora Shredingera v banakhovom prostranstve s potentsialom, singulyarnym na mnogoobraziyakh”, Vestn. NUUz., 2007, no. 3, 110–119 | MR | Zbl

[14] Mikhlin S.G., Mnogomernye singulyarnye integraly i integralnye uravneniya, Fizmatgiz, M., 1962

[15] Nikolskii S.M., Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, Izd. 2, Nauka, M., 1977 | MR

[16] Mikhlin S.G., Lineinye uravneniya v chastnykh proizvodnykh, Vyssh. shk., M., 1977

[17] Zigmund A., Trigonometricheskie ryady, v. 2, Mir, M., 1965