On the space of periodic ultradifferentiable functions of Roumieu type and its dual
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2023), pp. 89-95

Voir la notice de l'article provenant de la source Math-Net.Ru

With a help of a family ${\mathcal H}$ of convex nondecreasing functions on $[0, \infty)$ we define the space $J({\mathcal H})$ of $2 \pi$-periodic infinitely differentiable functions on the real line with given estimates for all derivatives. It belongs to the class of spaces of ultradifferentiable functions of Roumieu type. A description of the space $G({\mathcal H})$ is obtained in terms of the best trigonometric approximations and the rate of decrease of the Fourier coefficients. A general form of linear continuous functionals on $J({\mathcal H})$ is found. It is shown that some well-known classes of $2 \pi$-periodic functions of Gevrey type are special cases of the spaces $J({\mathcal H})$.
Keywords: Fourier series, trigonometric polynomials.
Mots-clés : Fourier coefficients
@article{IVM_2023_4_a7,
     author = {I. Kh. Musin},
     title = {On the space of periodic ultradifferentiable functions of {Roumieu} type and its dual},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {89--95},
     publisher = {mathdoc},
     number = {4},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2023_4_a7/}
}
TY  - JOUR
AU  - I. Kh. Musin
TI  - On the space of periodic ultradifferentiable functions of Roumieu type and its dual
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2023
SP  - 89
EP  - 95
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2023_4_a7/
LA  - ru
ID  - IVM_2023_4_a7
ER  - 
%0 Journal Article
%A I. Kh. Musin
%T On the space of periodic ultradifferentiable functions of Roumieu type and its dual
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2023
%P 89-95
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2023_4_a7/
%G ru
%F IVM_2023_4_a7
I. Kh. Musin. On the space of periodic ultradifferentiable functions of Roumieu type and its dual. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2023), pp. 89-95. http://geodesic.mathdoc.fr/item/IVM_2023_4_a7/