On the space of periodic ultradifferentiable functions of Roumieu type and its dual
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2023), pp. 89-95.

Voir la notice de l'article provenant de la source Math-Net.Ru

With a help of a family ${\mathcal H}$ of convex nondecreasing functions on $[0, \infty)$ we define the space $J({\mathcal H})$ of $2 \pi$-periodic infinitely differentiable functions on the real line with given estimates for all derivatives. It belongs to the class of spaces of ultradifferentiable functions of Roumieu type. A description of the space $G({\mathcal H})$ is obtained in terms of the best trigonometric approximations and the rate of decrease of the Fourier coefficients. A general form of linear continuous functionals on $J({\mathcal H})$ is found. It is shown that some well-known classes of $2 \pi$-periodic functions of Gevrey type are special cases of the spaces $J({\mathcal H})$.
Keywords: Fourier series, trigonometric polynomials.
Mots-clés : Fourier coefficients
@article{IVM_2023_4_a7,
     author = {I. Kh. Musin},
     title = {On the space of periodic ultradifferentiable functions of {Roumieu} type and its dual},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {89--95},
     publisher = {mathdoc},
     number = {4},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2023_4_a7/}
}
TY  - JOUR
AU  - I. Kh. Musin
TI  - On the space of periodic ultradifferentiable functions of Roumieu type and its dual
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2023
SP  - 89
EP  - 95
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2023_4_a7/
LA  - ru
ID  - IVM_2023_4_a7
ER  - 
%0 Journal Article
%A I. Kh. Musin
%T On the space of periodic ultradifferentiable functions of Roumieu type and its dual
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2023
%P 89-95
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2023_4_a7/
%G ru
%F IVM_2023_4_a7
I. Kh. Musin. On the space of periodic ultradifferentiable functions of Roumieu type and its dual. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2023), pp. 89-95. http://geodesic.mathdoc.fr/item/IVM_2023_4_a7/

[1] Ulyanov P.L., “O klassakh beskonechno differentsiruemykh funktsii”, DAN SSSR, 305:2 (1989), 287–290 | Zbl

[2] Ulyanov P.L., “O svoistvakh funktsii iz klassov Zhevre”, DAN SSSR, 314:4 (1990), 793-797 | Zbl

[3] Ulyanov P.L., “O klassakh beskonechno differentsiruemykh funktsii”, Matem. sb., 181:5 (1990), 589–609

[4] Sebashtyan-i-Silva Zh., “O nekotorykh klassakh lokalno vypuklykh prostranstv, vazhnykh v prilozheniyakh”, Matem., 1:1 (1957), 60–77

[5] Zharinov V.V., “Kompaktnye semeistva LVP i prostranstva $FS$ i $DFS$”, UMN, 34:4 (1979), 97–131 | MR | Zbl

[6] Braun R.W., Meise R., Taylor B.A., “Ultradifferentiable functions and Fourier analysis”, Results Math., 17:3–4 (1990), 206-237 | DOI | MR | Zbl

[7] Musin I.Kh., “Konstruktivnoe opisanie odnogo klassa periodicheskikh funktsii na veschestvennoi pryamoi”, Izv. vuzov. Matem., 2023, no. 2, 36–46

[8] Fikhtengolts G.M., Kurs differentsialnogo i integralnogo ischisleniya, v. II, Nauka, M., 1970

[9] Taguchi Y., “Fourier coefficients of periodic functions of Gevrey classes and ultradistributions”, Yokohama Math. J., 35:1–2 (1987), 51–60 | MR | Zbl