On the absolute convergence of double Fourier series of uniform almost-periodic functions in a uniform metric
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2023), pp. 65-75

Voir la notice de l'article provenant de la source Math-Net.Ru

Sufficient conditions for the absolute convergence of double Fourier series of uniform almost periodic functions are investigated in the paper in the case when the Fourier exponents have a single limit point at zero. As a structural characteristic of the function under consideration, we use the value built on the basis of the Laplace transform.
Keywords: almost-periodic functions, double Fourier series, function spectrum, limit point at zero
Mots-clés : Fourier coefficients, Laplace transform.
@article{IVM_2023_4_a5,
     author = {F. M. Talbakov},
     title = {On the absolute convergence of double {Fourier} series of uniform almost-periodic functions in a uniform metric},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {65--75},
     publisher = {mathdoc},
     number = {4},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2023_4_a5/}
}
TY  - JOUR
AU  - F. M. Talbakov
TI  - On the absolute convergence of double Fourier series of uniform almost-periodic functions in a uniform metric
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2023
SP  - 65
EP  - 75
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2023_4_a5/
LA  - ru
ID  - IVM_2023_4_a5
ER  - 
%0 Journal Article
%A F. M. Talbakov
%T On the absolute convergence of double Fourier series of uniform almost-periodic functions in a uniform metric
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2023
%P 65-75
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2023_4_a5/
%G ru
%F IVM_2023_4_a5
F. M. Talbakov. On the absolute convergence of double Fourier series of uniform almost-periodic functions in a uniform metric. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2023), pp. 65-75. http://geodesic.mathdoc.fr/item/IVM_2023_4_a5/