On the absolute convergence of double Fourier series of uniform almost-periodic functions in a uniform metric
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2023), pp. 65-75 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Sufficient conditions for the absolute convergence of double Fourier series of uniform almost periodic functions are investigated in the paper in the case when the Fourier exponents have a single limit point at zero. As a structural characteristic of the function under consideration, we use the value built on the basis of the Laplace transform.
Keywords: almost-periodic functions, double Fourier series, function spectrum, limit point at zero
Mots-clés : Fourier coefficients, Laplace transform.
@article{IVM_2023_4_a5,
     author = {F. M. Talbakov},
     title = {On the absolute convergence of double {Fourier} series of uniform almost-periodic functions in a uniform metric},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {65--75},
     year = {2023},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2023_4_a5/}
}
TY  - JOUR
AU  - F. M. Talbakov
TI  - On the absolute convergence of double Fourier series of uniform almost-periodic functions in a uniform metric
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2023
SP  - 65
EP  - 75
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/IVM_2023_4_a5/
LA  - ru
ID  - IVM_2023_4_a5
ER  - 
%0 Journal Article
%A F. M. Talbakov
%T On the absolute convergence of double Fourier series of uniform almost-periodic functions in a uniform metric
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2023
%P 65-75
%N 4
%U http://geodesic.mathdoc.fr/item/IVM_2023_4_a5/
%G ru
%F IVM_2023_4_a5
F. M. Talbakov. On the absolute convergence of double Fourier series of uniform almost-periodic functions in a uniform metric. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2023), pp. 65-75. http://geodesic.mathdoc.fr/item/IVM_2023_4_a5/

[1] Besicovich A.S., Almost periodic functions, Cembrige univerity press, 1932 | MR

[2] Bor G., Pochti periodicheskie funktsii, Gos. tekhn.-teoretich. izd., M., 1934

[3] Levitan B.M., Pochti-periodicheskie funktsii, Gos. tekhn.-teoretich. izd., M., 1953 | MR

[4] Bredikhina E.A., “Ob absolyutnoi skhodimosti ryadov Fure pochti-periodicheskikh funktsii”, DAN SSSR, 179:5 (1968), 1023–1026 | Zbl

[5] Bredikhina E.A., “Nekotorye otsenki otklonenii chastnykh summ ryadov Fure ot pochti-periodicheskikh funktsii”, Matem. sb., 50:3 (1960), 369–382 | MR

[6] Musielak J.O., “O bezwzglednej zbieznosci czeregow Fouriera pewnych funcji prawie okresowich”, Bull. Acad. Polon. Sci. Cl., 3:5 (1957), 9–17

[7] Kuptsov N.P., “Ob absolyutnoi i ravnomernoi skhodimosti ryadov Fure pochti-periodicheskikh funktsii”, Matem. sb., 40:2 (1956), 157–178

[8] Pritula Ya.G., “Pro absolyutnu zbizhnist ryadiv Fure maizhe periodichnykh funktsii”, Visn. Lviv. un-tu, 137:5 (1971), 72-80

[9] Dzhafarov A.S., Mamedov G.A., “Ob absolyutnoi skhodimosti ryadov Fure pochti-periodicheskikh funktsii Bezikovicha”, Izv. AN Azerb. SSCR, 1983, no. 5, 8–13 | Zbl

[10] Khasanov Yu.Kh., “Absolyutnaya skhodimost ryadov Fure pochti-periodicheskikh funktsii”, Matem. zametki, 94:5 (2013), 745–756 | DOI | Zbl

[11] Khasanov Yu.Kh., Talbakov F.M., “Ob absolyutnoi skhodimosti ryadov Fure pochti-periodicheskikh funktsii Bezikovicha”, DAN RT, 61:11–12 (2018), 813–821

[12] Talbakov F.M., “Ob absolyutnoi skhodimosti ryadov Fure pochti-periodicheskikh funktsii v ravnomernoi metrike”, DAN RT, 63:5–6 (2020), 289–293

[13] Dyachenko M.I., “O skhodimosti dvoinykh trigonometricheskikh ryadov i ryadov Fure s monotonnymi koeffitsientami”, Matem. sb., 129:1 (1986), 55–72