On the stability of a locally one-dimensional difference scheme for a first-order linear differential-algebraic system of index $(1,0)$
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2023), pp. 37-50.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper considers an initial-boundary value problem for a linear multidimensional first-order differential-algebraic system of index $(1,0)$. For its numerical solution, a four-point three-layer locally one-dimensional difference scheme is used. It is proved that under certain conditions on the steps of the difference grid, such a scheme is stable in terms of the initial-boundary conditions and in the right-hand side. The results of numerical experiments are presented.
Keywords: differential-algebraic system, difference scheme, locally-one-dimensional method, index.
@article{IVM_2023_4_a3,
     author = {S. V. Svinina},
     title = {On the stability of a locally one-dimensional difference scheme for a first-order linear differential-algebraic system of index $(1,0)$},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {37--50},
     publisher = {mathdoc},
     number = {4},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2023_4_a3/}
}
TY  - JOUR
AU  - S. V. Svinina
TI  - On the stability of a locally one-dimensional difference scheme for a first-order linear differential-algebraic system of index $(1,0)$
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2023
SP  - 37
EP  - 50
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2023_4_a3/
LA  - ru
ID  - IVM_2023_4_a3
ER  - 
%0 Journal Article
%A S. V. Svinina
%T On the stability of a locally one-dimensional difference scheme for a first-order linear differential-algebraic system of index $(1,0)$
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2023
%P 37-50
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2023_4_a3/
%G ru
%F IVM_2023_4_a3
S. V. Svinina. On the stability of a locally one-dimensional difference scheme for a first-order linear differential-algebraic system of index $(1,0)$. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2023), pp. 37-50. http://geodesic.mathdoc.fr/item/IVM_2023_4_a3/

[1] Kovenya V.M., Raznostnye metody resheniya mnogomernykh zadach, Kurs lektsii, Novosib. gos. un-t, Novosibirsk, 2004

[2] Ruschinskii V.M., “Prostranstvennye lineinye i nelineinye modeli kotlogeneratorov”, Vopr. identifikatsii i modelirovaniya, 1968, 8–15

[3] Sobolev S.L., “Ob odnoi novoi zadache matematicheskoi fiziki”, Izv. AN SSSR. Ser. matem., 18:1 (1954), 3–50 | MR | Zbl

[4] Kutateladze S.S., Nakoryakov V.E., Teplomassoobmen i volny v gazozhidkostnykh sistemakh, Nauka, Novosibirsk, 1984

[5] Demidenko G.V., Uspenskii S.V., Uravneniya i sistemy, ne razreshennye otnositelno starshei proizvodnoi, Nauchn. kniga, Novosibirsk, 1998 | MR

[6] Campbell S.L., Marzalek W., “The Index of an Infinite Dimensional Implicit System”, Math. Comput. Model. Dyn. Syst., 5:1 (1999), 18–42 | DOI | MR | Zbl

[7] Soto M.S., Tischendorf C., “Numerical analysis of DAEs from coupled circuit and semiconductor simulation”, Appl. Numer. Math., 53:2–4 (2005), 471–488 | DOI | MR | Zbl

[8] Lucht W., “Partial differential-algebraic systems of second order with symmetric convection”, Appl. Numer. Math., 53:2–4 (2005), 357–371 | DOI | MR | Zbl

[9] Svinina S.V., Svinin A.K., “Ob odnoi nachalno-kraevoi zadache dlya polulineinoi differentsialno-algebraicheskoi sistemy uravnenii v chastnykh proizvodnykh indeksa $(1,0)$”, Izv. vuzov. Matem., 2019, no. 5, 70–82 | MR | Zbl

[10] Svinina S.V., Svinin A.K., “O suschestvovanii resheniya nekotorykh smeshannykh zadach dlya lineinykh differentsialno-algebraicheskikh sistem uravnenii v chastnykh proizvodnykh”, Izv. vuzov. Matem., 2019, no. 4, 73–84 | MR | Zbl

[11] Svinina S.V., “Ob odnoi kvazilineinoi differentsialno-algebraicheskoi sisteme uravnenii v chastnykh proizvodnykh”, Zh. vychisl. matem. i matem. fiz., 59:11 (2019), 1856–1871 | DOI | MR | Zbl

[12] Gaidomak S.V., “Ob ustoichivosti neyavnoi raznostnoi skhemy dlya lineinoi differentsialno-algebraicheskoi sistemy uravnenii v chastnykh proizvodnykh”, Zh. vychisl. matem. i matem. fiz., 50:4 (2010), 707–717 | MR | Zbl

[13] Gaidomak S.V., “Trekhsloinyi raznostnyi metod resheniya lineinykh differentsialno-algebraicheskikh sistem uravnenii v chastnykh proizvodnykh”, Zh. vychisl. matem. i matem. fiz., 49:9 (2009), 1594–1608 | MR | Zbl

[14] Vabischevich P.N., Additivnye operatorno-raznostnye skhemy $($skhemy rasschepleniya$)$, KRASAND, M., 2013

[15] Douglas J.J., Rachford H.H., “On the numerical solution of heat conduction problems in two and three space variables”, Trans. Amer. Math. Soc., 82 (1956), 421–439 | DOI | MR | Zbl

[16] Svinina S.V., “Ob ustoichivosti splain-kollokatsionnoi raznostnoi skhemy dlya lineinykh mnogomernykh differentsialno-algebraicheskikh sistem”, Izv. vuzov. Matem., 2022, no. 8, 69–80 | Zbl

[17] Samarskii A.A., “Ob odnom ekonomichnom raznostnom metode resheniya mnogomernogo parabolicheskogo uravneniya v proizvolnoi oblasti”, Zh. vychisl. matem. i matem. fiz., 2:5 (1962), 787–811 | Zbl

[18] Gaidomak S.V., “O kanonicheskoi strukture puchka vyrozhdennykh matrits-funktsii”, Izv. vuzov. Matem., 2012, no. 2, 23–33 | MR | Zbl

[19] Gaidomak S.V., “Ob ustoichivosti neyavnoi splain-kollokatsionnoi raznostnoi skhemy dlya lineinykh differentsialno-algebraicheskikh uravnenii s chastnymi proizvodnymi”, Zh. vychisl. matem. i matem. fiz., 53:9 (2013), 1460–1479 | DOI | MR | Zbl

[20] Gaidomak S.V., Chistyakov V.F., “O sistemakh ne tipa Koshi–Kovalevskoi indeksa $(1,k)$”, Vychisl. tekhn., 10:2 (2005), 45–59 | Zbl

[21] Zavyalov Yu.S., Kvasov B.I., Miroshnichenko V.L., Metody splain-funktsii, Nauka, M., 1980 | MR

[22] Lankaster P., Teoriya matrits, per. s angl., Nauka, M., 1982 | MR