Generalized surface Green's functions for an elastic half-space
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2023), pp. 27-36.

Voir la notice de l'article provenant de la source Math-Net.Ru

Using generalized functions are constructed Green's functions for homogeneous elastic isotropic half-planes and half-spaces. Airy and Maxwell stress functions to find the Green's functions are used. One-dimensional and two-dimensional integral Fourier transforms to solve the boundary value problems are used. Taking into account the properties of generalized functions with a point support, singular components of displacement images are distinguished. It is shown that they correspond to the displacements of a rigid body. If there are no singular components, then the stresses and displacements coincide with the known classical solutions of the Flaman, Boussinesq and Cerutti problems.
Keywords: elastic half-space, influence functions, Green's functions, stress functions, generalized functions, point support.
@article{IVM_2023_4_a2,
     author = {A. V. Zemskov and D. V. Tarlakovskii},
     title = {Generalized surface {Green's} functions for an elastic half-space},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {27--36},
     publisher = {mathdoc},
     number = {4},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2023_4_a2/}
}
TY  - JOUR
AU  - A. V. Zemskov
AU  - D. V. Tarlakovskii
TI  - Generalized surface Green's functions for an elastic half-space
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2023
SP  - 27
EP  - 36
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2023_4_a2/
LA  - ru
ID  - IVM_2023_4_a2
ER  - 
%0 Journal Article
%A A. V. Zemskov
%A D. V. Tarlakovskii
%T Generalized surface Green's functions for an elastic half-space
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2023
%P 27-36
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2023_4_a2/
%G ru
%F IVM_2023_4_a2
A. V. Zemskov; D. V. Tarlakovskii. Generalized surface Green's functions for an elastic half-space. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2023), pp. 27-36. http://geodesic.mathdoc.fr/item/IVM_2023_4_a2/

[1] Timoshenko S.P., Guder Dzh., Teoriya uprugosti, Nauka, M., 1975

[2] Lyav A., Matematicheskaya teoriya uprugosti, per. s angl., ONTI. Glavnaya redaktsiya obschetekhnicheskoi literatury i nomografii, M.-L., 1935

[3] Pobedrya B.E., Georgievskii D.V., Lektsii po teorii uprugosti, Editorial URSS, M., 1999

[4] Novozhilov V.V., Teoriya uprugosti, Sudpromgiz, L., 1958

[5] Dzhonson K., Mekhanika kontaktnogo vzaimodeistviya, Mir, M., 1989

[6] Amenzade Yu.A., Teoriya uprugosti, Vysshaya shkola, M., 1976 | MR

[7] Rabotnov Yu.N., Mekhanika deformiruemogo tverdogo tela, Nauka, M., 1979

[8] Novatskii V., Teoriya uprugosti, Mir, M., 1975

[9] Gorshkov A.G., Starovoitov E.I., Tarlakovskii D.V., Teoriya uprugosti i plastichnosti, Fizmatlit, M., 2002

[10] Khan X., Teoriya uprugosti. Osnovy lineinoi teorii i ee primeneniya, per. s nem., Mir, M., 1988

[11] Rekach V.G., Rukovodstvo k resheniyu zadach po teorii uprugosti, Vysshaya shkola, M., 1966

[12] Landau L.D., Lifshits E.M., Teoriya uprugosti, Nauka, M., 1965

[13] Meiz Dzh., Teoriya i zadachi mekhaniki sploshnykh sred, per. s angl., LIBROKOM, M., 2010

[14] Lure A.I., Teoriya uprugosti, Nauka, M., 1970

[15] Kech V., Teodoresku P., Vvedenie v teoriyu obobschennykh funktsii s prilozheniyami v tekhnike, Mir, M., 1978 | MR

[16] Gelfand N.M., Shilov G.E., Obobschennye funktsii, v. 1, Obobschennye funktsii i deistviya nad nimi, Fizmatlit, M., 1958

[17] Gelfand N.M., Shilov G.E., Obobschennye funktsii, v. 2, Prostranstva osnovnykh i obobschennykh funktsii, Fizmatlit, M., 1958 | MR

[18] Gelfand N.M., Shilov G.E., Obobschennye funktsii, v. 3, Nekotorye voprosy teorii i differentsialnykh uravnenii, Fizmatlit, M., 1958 | MR

[19] Gelfand N.M., Shilov G.E., Obobschennye funktsii, v. 4, Nekotorye primeneniya garmonicheskogo analiza. Osnaschennye gilbertovy prostranstva, Fizmatlit, M., 1961 | MR

[20] Vladimirov V.S., Uravneniya matematicheskoi fiziki, Nauka, M., 1981 | MR

[21] Vladimirov V.S., Methods of the Theory of Generalized Functions, Taylor and Francis, London–New York, 2002 | MR | Zbl

[22] Okonechnikov A.S., Tarlakovskii D.V., Fedotenkov G.V., Obobschennye funktsii v mekhanike deformiruemogo tverdogo tela. Osnovy teorii, Uchebnoe posobie, MAI-Print, M., 2019

[23] Agranovich M.S., Obobschennye funktsii, MTsNMO, M., 2008

[24] Lokteva N.A., Tarlakovskii D.V., Fedotenkov G.V., Ploskie zadachi teorii uprugosti, Uchebnoe posobie, MAI-Print, M., 2011

[25] Gorshkov A.G., Medvedskii A.L., Rabinskii L.N., Tarlakovskii D.V., Volny v sploshnykh sredakh, Uchebnoe posobie dlya vuzov, Fizmatlit, M., 2004

[26] Okonechnikov A.S., Tarlakovskii D.V., Fedotenkov G.V., Obobschennye funktsii v mekhanike deformiruemogo tverdogo tela. Integralnye preobrazovaniya i differentsialnye uravneniya, Uchebnoe posobie, MAI-Print, M., 2019

[27] Tarlakovskii D.V., Fedotenkov G.V., Obschie sootnosheniya i variatsionnye printsipy matematicheskoi teorii uprugosti, Uchebnoe posobie, Izd-vo MAI, M., 2009

[28] Vestyak A.V., Vestyak V.A., Tarlakovskii D.V., Algebra i analiticheskaya geometriya, v. 1, Izd-vo MAI, M., 2002