Generalized surface Green's functions for an elastic half-space
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2023), pp. 27-36
Voir la notice de l'article provenant de la source Math-Net.Ru
Using generalized functions are constructed Green's functions for homogeneous elastic isotropic half-planes and half-spaces. Airy and Maxwell stress functions to find the Green's functions are used. One-dimensional and two-dimensional integral Fourier transforms to solve the boundary value problems are used. Taking into account the properties of generalized functions with a point support, singular components of displacement images are distinguished. It is shown that they correspond to the displacements of a rigid body. If there are no singular components, then the stresses and displacements coincide with the known classical solutions of the Flaman, Boussinesq and Cerutti problems.
Keywords:
elastic half-space, influence functions, Green's functions, stress functions, generalized functions, point support.
@article{IVM_2023_4_a2,
author = {A. V. Zemskov and D. V. Tarlakovskii},
title = {Generalized surface {Green's} functions for an elastic half-space},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {27--36},
publisher = {mathdoc},
number = {4},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2023_4_a2/}
}
TY - JOUR AU - A. V. Zemskov AU - D. V. Tarlakovskii TI - Generalized surface Green's functions for an elastic half-space JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2023 SP - 27 EP - 36 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2023_4_a2/ LA - ru ID - IVM_2023_4_a2 ER -
A. V. Zemskov; D. V. Tarlakovskii. Generalized surface Green's functions for an elastic half-space. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2023), pp. 27-36. http://geodesic.mathdoc.fr/item/IVM_2023_4_a2/