Generalized surface Green's functions for an elastic half-space
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2023), pp. 27-36

Voir la notice de l'article provenant de la source Math-Net.Ru

Using generalized functions are constructed Green's functions for homogeneous elastic isotropic half-planes and half-spaces. Airy and Maxwell stress functions to find the Green's functions are used. One-dimensional and two-dimensional integral Fourier transforms to solve the boundary value problems are used. Taking into account the properties of generalized functions with a point support, singular components of displacement images are distinguished. It is shown that they correspond to the displacements of a rigid body. If there are no singular components, then the stresses and displacements coincide with the known classical solutions of the Flaman, Boussinesq and Cerutti problems.
Keywords: elastic half-space, influence functions, Green's functions, stress functions, generalized functions, point support.
@article{IVM_2023_4_a2,
     author = {A. V. Zemskov and D. V. Tarlakovskii},
     title = {Generalized surface {Green's} functions for an elastic half-space},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {27--36},
     publisher = {mathdoc},
     number = {4},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2023_4_a2/}
}
TY  - JOUR
AU  - A. V. Zemskov
AU  - D. V. Tarlakovskii
TI  - Generalized surface Green's functions for an elastic half-space
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2023
SP  - 27
EP  - 36
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2023_4_a2/
LA  - ru
ID  - IVM_2023_4_a2
ER  - 
%0 Journal Article
%A A. V. Zemskov
%A D. V. Tarlakovskii
%T Generalized surface Green's functions for an elastic half-space
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2023
%P 27-36
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2023_4_a2/
%G ru
%F IVM_2023_4_a2
A. V. Zemskov; D. V. Tarlakovskii. Generalized surface Green's functions for an elastic half-space. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2023), pp. 27-36. http://geodesic.mathdoc.fr/item/IVM_2023_4_a2/