Exponential stability of autonomous differential equations of neutral type. II
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2023), pp. 3-14

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we consider linear differential equations of neutral type. We establish criteria for the solvability of the operator with a derivative in the spaces $L_p$, expressed in terms of the equation parameters, for commensurable delays and for delays linearly independent with respect to integers.
Mots-clés : neutral equation
Keywords: aftereffect, the Cauchy function, fundamental solution, exponential estimations, exponential stability.
@article{IVM_2023_4_a0,
     author = {A. S. Balandin},
     title = {Exponential stability of autonomous differential equations of neutral type. {II}},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {3--14},
     publisher = {mathdoc},
     number = {4},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2023_4_a0/}
}
TY  - JOUR
AU  - A. S. Balandin
TI  - Exponential stability of autonomous differential equations of neutral type. II
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2023
SP  - 3
EP  - 14
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2023_4_a0/
LA  - ru
ID  - IVM_2023_4_a0
ER  - 
%0 Journal Article
%A A. S. Balandin
%T Exponential stability of autonomous differential equations of neutral type. II
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2023
%P 3-14
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2023_4_a0/
%G ru
%F IVM_2023_4_a0
A. S. Balandin. Exponential stability of autonomous differential equations of neutral type. II. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2023), pp. 3-14. http://geodesic.mathdoc.fr/item/IVM_2023_4_a0/