Plate oscillations with mixed boundary conditions
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2023), pp. 63-77.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper problem with initial conditions for the equation of vibrations of a rectangular plate with boundary conditions is investigated. An energy inequality is established, which implies the uniqueness of the solution of the initial-boundary value problem. Existence and stability theorems for the solution of the problem in the classes of regular and generalized solutions are proved.
Keywords: equation of vibrations of a rectangular plate, initial boundary value problem, energy inequality, uniqueness, series, stability.
Mots-clés : existence
@article{IVM_2023_3_a5,
     author = {K. B. Sabitov},
     title = {Plate oscillations with mixed boundary conditions},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {63--77},
     publisher = {mathdoc},
     number = {3},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2023_3_a5/}
}
TY  - JOUR
AU  - K. B. Sabitov
TI  - Plate oscillations with mixed boundary conditions
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2023
SP  - 63
EP  - 77
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2023_3_a5/
LA  - ru
ID  - IVM_2023_3_a5
ER  - 
%0 Journal Article
%A K. B. Sabitov
%T Plate oscillations with mixed boundary conditions
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2023
%P 63-77
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2023_3_a5/
%G ru
%F IVM_2023_3_a5
K. B. Sabitov. Plate oscillations with mixed boundary conditions. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2023), pp. 63-77. http://geodesic.mathdoc.fr/item/IVM_2023_3_a5/

[1] Tikhonov A.N., Samarskii A.A., Uravneniya matematicheskoi fiziki, Nauka, M., 1966 | MR

[2] Timoshenko S.P., Kolebaniya v inzhenernom dele, Fizmatlit, M., 1967

[3] Guld S., Variatsionnye metody v zadachakh o sobstvennykh znacheniyakh: vvedenie v metod promezhutochnykh zadach Vainshteina, Mir, M., 1970

[4] Andrianov I.V., Danishevskii V.V., Ivankov A.O., Asimptoticheskie metody v teorii kolebanii balok i plastin, Pridnepropetrovsk. gos. akademiya stroitelstva i arkhitektury, Dnepropetrovsk, 2010

[5] Voigt W., “Problem der transversalen Schwingungen rechteckigen Platten”, Nachr. Gess. Wiss. zu Gottingen, 1893, no. 6, 225–230

[6] Ritz W., “Theorie der Transversalschwingungen Einer Quadratishen Plate Mit Freien Rändrern”, Annal. der Phys., 28:4 (1909), 737–786 | DOI

[7] Weinstein A., Chien W.Z., “On the vibrations of clamped plate under tension”, Quart. Appl. Math, 1:1 (1943), 61–68 | DOI | MR | Zbl

[8] Young P., “Vibration of rectangular plate by the Ritz method”, Trans. ASME. J. Appl. Mech., 17:4 (1950), 448–453 | DOI | Zbl

[9] Sabitov K.B., “Kolebaniya balki s zadelannymi kontsami”, Vestn. Samarsk. gos. tekh. un-ta. Ser. Fiz.-matem. nauki, 19:2 (2015), 311–324 | DOI | Zbl

[10] Sabitov K.B., “K teorii nachalno-granichnykh zadach dlya uravneniya sterzhnei i balok”, Differents. uravneniya, 53:1 (2017), 89–100 | DOI | Zbl

[11] Sabitov K.B., “Nachalnaya zadacha dlya uravneniya kolebanii balok”, Differents. uravneniya, 53:5 (2017), 665–671 | DOI | MR | Zbl

[12] Sabitov K.B., Akimov A.A., “Nachalno-granichnaya zadacha dlya nelineinogo uravneniya kolebanii balki”, Differents. uravneniya, 56:5 (2020), 632–645 | DOI | Zbl

[13] Sabitov K.B., “Obratnye zadachi dlya uravneniya kolebanii balki po opredeleniyu pravoi chasti i nachalnykh uslovii”, Differents. uravneniya, 56:6 (2020), 773–785 | DOI | Zbl

[14] Sabitov K.B., “Nachalno-granichnye zadachi dlya uravneniya kolebanii pryamougolnoi plastiny”, Izv. vuzov. Matem., 2021, no. 10, 60–70 | Zbl

[15] Sabitov K.B., Uravneniya matematicheskoi fiziki, Fizmatlit, M., 2013

[16] Ilin V.A., Sadovnichii V.A., Sendov Bl.Kh., Matematicheskii analiz, v. 2, Izd-vo MGU, M., 1985 | MR