Construction of a factorization of a certain class of matrix functions in the Wiener algebra of order two
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2023), pp. 41-51

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper a representative class of matrix functions from the Wiener algebra of order 2 is found, which admits effective factorization. The factorization problem for elements of this class reduces to a truncated Wiener–Hopf equation with a contracting integral operator. The latter guarantees, as will be shown in the paper, the existence of canonical factorization and its construction for matrix functions from the class under consideration.
Keywords: factorization problem,partial indices, Wiener algebra, Riemann boundary value problem, truncated equation Wiener–Hopf.
@article{IVM_2023_3_a3,
     author = {A. F. Voronin},
     title = {Construction of a factorization of a certain class of matrix functions in the {Wiener} algebra of order two},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {41--51},
     publisher = {mathdoc},
     number = {3},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2023_3_a3/}
}
TY  - JOUR
AU  - A. F. Voronin
TI  - Construction of a factorization of a certain class of matrix functions in the Wiener algebra of order two
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2023
SP  - 41
EP  - 51
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2023_3_a3/
LA  - ru
ID  - IVM_2023_3_a3
ER  - 
%0 Journal Article
%A A. F. Voronin
%T Construction of a factorization of a certain class of matrix functions in the Wiener algebra of order two
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2023
%P 41-51
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2023_3_a3/
%G ru
%F IVM_2023_3_a3
A. F. Voronin. Construction of a factorization of a certain class of matrix functions in the Wiener algebra of order two. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2023), pp. 41-51. http://geodesic.mathdoc.fr/item/IVM_2023_3_a3/