Multiplicatively idempotent semirings with annihilator condition
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2023), pp. 29-40.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article is devoted to the structural theory of semirings with additional conditions. It studies multiplicatively idempotent semirings with the annihilator condition. General properties of such semirings are considered. The work is accompanied by examples. A criterion for the fulfillment of the annihilator condition in an arbitrary multiplicatively idempotent semiring with zero is proved (Proposition 6). In terms of annihilators, the authors give new abstract characterizations of semirings isomorphic to the direct product of a Boolean ring with identity and a Boolean lattice (Theorem 1). The direct product of a Boolean ring and a distributive lattice with the annihilator condition is a multiplicatively idempotent semiring with the annihilator condition. The converse assertion is not true in general (Theorem 2). The article presents an example of the general nature of a multiplicatively idempotent semiring with identity and with the annihilator condition, which is not isomorphic to a direct product of a Boolean ring and a distributive lattice. A number of additions complete the research.
Keywords: semiring, multiplicatively idempotent semiring, annihilator condition, Boolean ring, distributive lattice.
@article{IVM_2023_3_a2,
     author = {E.M. Vechtomov and A. A. Petrov},
     title = {Multiplicatively idempotent semirings with annihilator condition},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {29--40},
     publisher = {mathdoc},
     number = {3},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2023_3_a2/}
}
TY  - JOUR
AU  - E.M. Vechtomov
AU  - A. A. Petrov
TI  - Multiplicatively idempotent semirings with annihilator condition
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2023
SP  - 29
EP  - 40
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2023_3_a2/
LA  - ru
ID  - IVM_2023_3_a2
ER  - 
%0 Journal Article
%A E.M. Vechtomov
%A A. A. Petrov
%T Multiplicatively idempotent semirings with annihilator condition
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2023
%P 29-40
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2023_3_a2/
%G ru
%F IVM_2023_3_a2
E.M. Vechtomov; A. A. Petrov. Multiplicatively idempotent semirings with annihilator condition. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2023), pp. 29-40. http://geodesic.mathdoc.fr/item/IVM_2023_3_a2/

[1] Vechtomov E.M., Petrov A.A., “Prostye idealy v multiplikativno idempotentnykh polukoltsakh”, Matem. zametki, 111:4 (2022), 494–505 | DOI | Zbl

[2] Vechtomov E.M., Petrov A.A., Polukoltsa s idempotentnym umnozheniem, Raduga-PRESS, Kirov, 2015 | MR

[3] Chajda I., Länger H., Švrček F., “Multiplicatively Idempotent Semirings”, Mathematica Bohemica, 140:1 (2015), 35–42 | DOI | MR | Zbl

[4] Golan J.S., Semirings and their Applications, Kluwer Academic Publ., Dordrecht-Boston-London, 1999 | MR | Zbl

[5] Hebisch U., Weinert H.J., Semirings: Algebraic Theory and Applications in Computer Science, Ser. Algebra, World Sci., Singapore, 1998 | MR | Zbl

[6] Maslov V.P., Kolokoltsov V.N., Idempotentnyi analiz i ego primenenie v optimalnom upravlenii, Fizmatlit, M., 1994 | MR

[7] Birkgof G., Teoriya reshetok, 3-e izd., per. s angl., Nauka, M., 1984

[8] Grettser G., Obschaya teoriya reshetok, Mir, M., 1982

[9] Skornyakov L.A., Elementy teorii struktur, 2-e izd., Nauka, M., 1982 | MR

[10] Lambek I., Koltsa i moduli, Mir, M., 1971 | MR

[11] Vechtomov E.M., “Annulyatornye kharakterizatsii bulevykh kolets i bulevykh reshetok”, Matem. zametki, 53:2 (1993), 15–24 | Zbl

[12] Chermnykh V.V., “Funktsionalnye predstavleniya polukolets”, Fundament. i prikl. matem., 17:3 (2012), 111–227 | Zbl