Exponential stability of autonomous differential equations of neutral type. I
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2023), pp. 12-28.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we consider linear differential equations of neutral type. We establish necessary and sufficient conditions under which the Cauchy function and the fundamental solution of these equations have exponential estimates. The obtained results reduce the problem of exponential stability for autonomous equation of neutral type to two simpler ones: on reversibility of the operator at the derivative and on the location of the zeros of the characteristic function on the complex plane, while it is not necessary to check the separation of the zeros of the characteristic function from the imaginary axis.
Mots-clés : neutral equation
Keywords: aftereffect, the Cauchy function, fundamental solution, exponential estimation, exponential stability.
@article{IVM_2023_3_a1,
     author = {A. S. Balandin},
     title = {Exponential stability of autonomous differential equations of neutral type. {I}},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {12--28},
     publisher = {mathdoc},
     number = {3},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2023_3_a1/}
}
TY  - JOUR
AU  - A. S. Balandin
TI  - Exponential stability of autonomous differential equations of neutral type. I
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2023
SP  - 12
EP  - 28
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2023_3_a1/
LA  - ru
ID  - IVM_2023_3_a1
ER  - 
%0 Journal Article
%A A. S. Balandin
%T Exponential stability of autonomous differential equations of neutral type. I
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2023
%P 12-28
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2023_3_a1/
%G ru
%F IVM_2023_3_a1
A. S. Balandin. Exponential stability of autonomous differential equations of neutral type. I. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2023), pp. 12-28. http://geodesic.mathdoc.fr/item/IVM_2023_3_a1/

[1] Azbelev N.V., Maksimov V.P., Rakhmatullina L.F., Vvedenie v teoriyu funktsionalno-differentsial-nykh uravnenii, Nauka, M., 1991 | MR

[2] Natanson I.P., Teoriya funktsii veschestvennoi peremennoi, Nauka, M., 1974 | MR

[3] Kirillov A.A., Gvishiani A.D., Teoremy i zadachi funktsionalnogo analiza, Nauka, M., 1988

[4] Azbelev N.V., Simonov P.M., Stability of differential equations with aftereffects, Stability and control: Theory, Methods and Appl., 20, Taylor, London, 2003 | MR

[5] Balandin A.S., Malygina V.V., “Ob ustoichivosti vmeste s proizvodnoi odnogo klassa differentsialnykh uravnenii neitralnogo tipa”, Prikl. matem. i vopr. uprav., 2019, no. 1, 22–50

[6] Balandin A.S., Malygina V.V., “Ob eksponentsialnoi ustoichivosti lineinykh differentsialno-raznostnykh uravnenii neitralnogo tipa”, Izv. vuzov. Matem., 2007, no. 7, 17–27 | Zbl

[7] Simonov P.M., Chistyakov A.V., “Ob eksponentsialnoi ustoichivosti lineinykh differentsialno-raznostnykh sistem”, Izv. vuzov. Matem., 1997, no. 6, 37–49 | Zbl

[8] Balandin A.S., Chudinov K.M., “On the asymptotic behavior of linear autonomous functional differential equations of neutral type”, Funct. Diff. Equat., 15:1–2 (2008), 5–15 | MR | Zbl

[9] Balandin A.S., “Ob ustoichivosti po pravoi chasti odnogo differentsialno-raznostnogo uravneniya neitralnogo tipa”, Vychisl. mekhan., 2008, no. 7, 11–23

[10] Kolmogorov A.N., Fomin S.V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1981 | MR

[11] Lavrentev M.A., Shabat B.V., Metody teorii funktsii kompleksnogo peremennogo, Nauka, M., 1987 | MR

[12] Bellman R., Kuk K., Differentsialno-raznostnye uravneniya, Mir, M., 1967

[13] Kurbatov V.G., Lineinye differentsialno-raznostnye uravneniya, Izd-vo VGU, Voronezh, 1990

[14] Levitan B.M., Zhikov V.V., Pochti-periodicheskie funktsii i differentsialnye uravneniya, Izd-vo Moskovsk. un-ta, M., 1978

[15] Leontev A.F., Ryady eksponent, Nauka, M., 1976 | MR

[16] Balandin A.S., “Ob ustoichivosti differentsialnykh uravnenii neitralnogo tipa”, Vestn. Permsk. un-ta. Ser. Matem. Mekhan. Informatika, 2:2 (2005), 11–17

[17] Myshkis A.D., Lineinye differentsialnye uravneniya s zapazdyvayuschim argumentom, Nauka, M., 1972 | MR

[18] Elsgolts L.E., Norkin S.B., Vvedenie v teoriyu differentsialnykh uravnenii s otklonyayuschimsya argumentom, Nauka, M., 1971 | MR

[19] Demidovich B.P., Lektsii po matematicheskoi teorii ustoichivosti, Nauka, M., 1967 | MR

[20] Kolmanovskii V.B., Nosov V.R., Ustoichivost i periodicheskie rezhimy reguliruemykh sistem s posledeistviem, Nauka, M., 1981 | MR

[21] Kheil Dzh., Teoriya funktsionalno-differentsialnykh uravnenii, Mir, M., 1984