Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2023_2_a4, author = {N. A. Rather and Aijaz Bhat and M. Shafi}, title = {Sharpening of {Erd\"{o}s-Lax} inequality for polynomials}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {57--65}, publisher = {mathdoc}, number = {2}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2023_2_a4/} }
N. A. Rather; Aijaz Bhat; M. Shafi. Sharpening of Erd\"{o}s-Lax inequality for polynomials. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2023), pp. 57-65. http://geodesic.mathdoc.fr/item/IVM_2023_2_a4/
[1] Bernstein S., “Sur l'ordre de la meilleure approximation des functions continues par des polynomes de degré donné”, Mem. Cl. Sci. Acad. Roy Belg., 4 (1912), 1–103
[2] Lax P.D., “Proof of a conjecture of P. Erdös on the derivative of a polynomial”, Bull. Amer. Math. Soc., 50 (1944), 509–513
[3] Malik M.A., “On the derivative of a polynomial”, J. London Math. Soc., 2:1 (1969), 57–60
[4] Govil N.K., “On a theorem of S. Bernstein”, Proc. Nat. Acad. Sci., 50 (1980), 50–52
[5] Aziz A., Ahmad N., “Inequalities for the derivative of a polynomial”, Proc. Math. Sci. (Math. Sci.), 107 (1997), 189–196
[6] Milovanović G.V., Mir A., “On the Erdös-Lax inequality concerning polynomials”, Math. Inequal. Appl., 23:4 (2020), 1499–1508
[7] Osserman R., “A sharp Schwarz inequality on the boundary”, Proc. Amer. Math. Soc., 128:12 (2000), 3513–3517
[8] Frappier C., Rahman Q.I., Ruscheweyh St., “New inequalities for polynomials”, Trans. Amer. Math. Soc., 288:1 (1985), 69–99
[9] Govil N.K., Rahman Q.I., “Functions of exponential type not vanishing in a half-plane and related polynomials”, Trans. Amer. Math. Soc., 137 (1969), 501–517