Invariant almost contact structures and connections on the Lobachevsky space
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2023), pp. 47-56.

Voir la notice de l'article provenant de la source Math-Net.Ru

It has been proved that there is left-invariant normal almost contact metric structure on the group model of the Lobachevsky space. All left-invariant linear connections compatible with this structure have been found and connections with a zero curvature tensor have been distinguished among them. On the Lobachevsky space, in addition to the Levi-Civita connection, there is a 1-parameter family of metric connections with skew-torsion that is invariant with respect to the complete six-dimensional group of motions. Also, there is only one semi symmetric almost contact metric connection that is invariant with respect to a 4-dimensional subgroup of the group of motions.
Keywords: almost contact structure
Mots-clés : group of motions, invariant connection.
@article{IVM_2023_2_a3,
     author = {A. O. Rastrepina and O. P. Surina},
     title = {Invariant almost contact structures and connections on the {Lobachevsky} space},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {47--56},
     publisher = {mathdoc},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2023_2_a3/}
}
TY  - JOUR
AU  - A. O. Rastrepina
AU  - O. P. Surina
TI  - Invariant almost contact structures and connections on the Lobachevsky space
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2023
SP  - 47
EP  - 56
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2023_2_a3/
LA  - ru
ID  - IVM_2023_2_a3
ER  - 
%0 Journal Article
%A A. O. Rastrepina
%A O. P. Surina
%T Invariant almost contact structures and connections on the Lobachevsky space
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2023
%P 47-56
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2023_2_a3/
%G ru
%F IVM_2023_2_a3
A. O. Rastrepina; O. P. Surina. Invariant almost contact structures and connections on the Lobachevsky space. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2023), pp. 47-56. http://geodesic.mathdoc.fr/item/IVM_2023_2_a3/

[1] Galaev S.V., “Pochti kontaktnye metricheskie prostranstva s $N$-svyaznostyu”, Izv. Sarat. un-ta. Nov. ser. Ser. Matem. Mekhan. Informatika, 15:3 (2015), 258–264 | DOI

[2] Galaev S.V., “$\nabla^N$-Einshteinovy pochti kontaktnye metricheskie mnogoobraziya”, Vestn. Tomsk. gos. un-ta. Matem. i mekhan., 70 (2021), 5–15 | DOI

[3] Banaru M.B., “O pochti kontaktnykh metricheskikh $1$-giperpoverkhnostyakh kelerovykh mnogoobrazii”, Sib. matem. zhurn., 55:4 (2014), 719–723 | DOI

[4] Banaru M.B., “O pochti kontaktnykh metricheskikh giperpoverkhnostyakh s malymi tipovymi chislami v $W_4$-mnogoobraziyakh”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekhan., 1 (2018), 67–70 | DOI

[5] Smolentsev N.K., “Levoinvariantnye para-sasakievy struktury na gruppakh Li”, Vestn. Tomsk. gos. un-ta. Matem. i mekhan., 62 (2019), 27–37 | DOI

[6] Smolentsev N.K., Shagabudinova I.Yu., “O parasasakievykh strukturakh na pyatimernykh algebrakh Li”, Vestn. Tomsk. gos. un-ta. Matem. i mekhan., 69 (2021), 37–52 | DOI

[7] Panzhenskii V.I., Rastrepina A.O., “Levoinvariantnaya kontaktnaya metricheskaya struktura na mnogoobrazii Sol”, Uchen. zap. Kazan. un-ta. Ser. Fiz.-matem. nauki, 162:1 (2020), 77–90 | DOI

[8] Panzhenskii V.I., Rastrepina A.O., “Levoinvariantnaya parasasakieva struktura na gruppe Geizenberga”, Vestn Tom. gos. un-ta. Matem. i mekhan., 75 (2022), 38–51 | DOI

[9] Calvaruso G., “Three-dimensional homogeneous almost contact metric structures”, J. Geom. and Phys., 69 (2013), 60-73 | DOI

[10] Kirichenko V.F., Differentsialno-geometricheskie struktury na mnogoobraziyakh, MPGU, M., 2003

[11] Diatta A., “Left Invariant Contact Structures on Lie Groups”, Diff. Geom. and Appl., 26:5 (2008), 544–552 | DOI

[12] Norden A.P., Prostranstvo affinnoi svyaznosti, 2-e izd., ispr., Nauka, M., 1976

[13] Panzhenskii V.I., “Avtomorfizmy mnogoobrazii Rimana-Kartana”, Matem. zametki, 98:4 (2015), 544–556 | DOI