Invariant almost contact structures and connections on the Lobachevsky space
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2023), pp. 47-56
Voir la notice de l'article provenant de la source Math-Net.Ru
It has been proved that there is left-invariant normal almost contact metric structure on the group model of the Lobachevsky space. All left-invariant linear connections compatible with this structure have been found and connections with a zero curvature tensor have been distinguished among them. On the Lobachevsky space, in addition to the Levi-Civita connection, there is a 1-parameter family of metric connections with skew-torsion that is invariant with respect to the complete six-dimensional group of motions. Also, there is only one semi symmetric almost contact metric connection that is invariant with respect to a 4-dimensional subgroup of the group of motions.
Keywords:
almost contact structure
Mots-clés : group of motions, invariant connection.
Mots-clés : group of motions, invariant connection.
@article{IVM_2023_2_a3,
author = {A. O. Rastrepina and O. P. Surina},
title = {Invariant almost contact structures and connections on the {Lobachevsky} space},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {47--56},
publisher = {mathdoc},
number = {2},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2023_2_a3/}
}
TY - JOUR AU - A. O. Rastrepina AU - O. P. Surina TI - Invariant almost contact structures and connections on the Lobachevsky space JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2023 SP - 47 EP - 56 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2023_2_a3/ LA - ru ID - IVM_2023_2_a3 ER -
A. O. Rastrepina; O. P. Surina. Invariant almost contact structures and connections on the Lobachevsky space. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2023), pp. 47-56. http://geodesic.mathdoc.fr/item/IVM_2023_2_a3/