Constructive description of a class of periodic functions on the real line
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2023), pp. 36-46.

Voir la notice de l'article provenant de la source Math-Net.Ru

With a help of some family ${\mathcal H}$ of convex nondecreasing functions on $[0, \infty)$ we define the space $G({\mathcal H})$ of $2 \pi$-periodic infinitely differentiable functions on the real line with given estimates for all derivatives. A description of the space $G({\mathcal H})$ is obtained in terms of the best trigonometric approximations and the rate of decrease of the Fourier coefficients. There are given families ${\mathcal H}$ for which functions from $G({\mathcal H})$ can be extended to analytic functions in the horizontal strip of the complex plane. An internal description of the space of such extensions is obtained. Examples of a family of convex functions ${\mathcal H}$ are given.
Keywords: Fourier series, approximation by trigonometric polynomials.
Mots-clés : Fourier coefficients
@article{IVM_2023_2_a2,
     author = {I. Kh. Musin},
     title = {Constructive description of a class of periodic functions on the real line},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {36--46},
     publisher = {mathdoc},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2023_2_a2/}
}
TY  - JOUR
AU  - I. Kh. Musin
TI  - Constructive description of a class of periodic functions on the real line
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2023
SP  - 36
EP  - 46
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2023_2_a2/
LA  - ru
ID  - IVM_2023_2_a2
ER  - 
%0 Journal Article
%A I. Kh. Musin
%T Constructive description of a class of periodic functions on the real line
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2023
%P 36-46
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2023_2_a2/
%G ru
%F IVM_2023_2_a2
I. Kh. Musin. Constructive description of a class of periodic functions on the real line. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2023), pp. 36-46. http://geodesic.mathdoc.fr/item/IVM_2023_2_a2/

[1] Jackson D., Über die Genauigkeit der Annäherung stetiger Funktionen durch ganze rationale Funktionen gegebenen Grades und trigonometrische Summen gegebener Ordnung, Gekrönte Preiss-chrift und Inaugural-Dissertation, Göttingen University, Göttingen, June 14, 1911

[2] Jackson D., “The general theory of approximation by polynomials and trigonometric sums”, Bull. Amer. Math. Soc., 27:9-10 (1921), 415–431

[3] Jackson D., The theory of approximation, Amer. Math. Soc. Colloquium Publ., XI, Amer. Math. Soc., N.Y., 1930

[4] Bernshtein S.N., “O nailuchshem' priblizhenii nepreryvnykh' funktsii posredstvom' mnogochlenov' dannoi stepeni. II”, Soobsch. Khark. matem. o-va Vtoraya ser., 13:4–5 (1912), 145–194

[5] Bernstein S.N., “Sur l'ordre de la meilleure approximation des fonctions continues par les polyn$\hat{o}$mes de degré donné”, Mem. Cl. Sci. Acad. Roy. Belg., 4 (1912), 1–103

[6] Bernshtein S.N., “O novykh issledovaniyakh, otnosyaschikhsya k nailuchshemu priblizheniyu nepreryvnykh funktsii mnogochlenami”, UMN, 5:4 (38) (1950), 121–131

[7] de la Vallée Poussin, Charles Jean de, Leçons sur l'approximation des Fonctions d'une Variable Réellee, Gauthier-Villars, Paris, 1919

[8] Ulyanov P.L., “O klassakh beskonechno differentsiruemykh funktsii”, DAN SSSR, 305:2 (1989), 287–290

[9] Ulyanov P.L., “O svoistvakh funktsii iz klassov Zhevre”, DAN SSSR, 314:4 (1990), 793-797

[10] Ulyanov P.L., “O klassakh beskonechno differentsiruemykh funktsii”, Matem. sb., 181:5 (1990), 589–609

[11] Braun R.W., Meise R., Taylor B.A., “Ultradifferentiable functions and Fourier analysis”, Results. Math., 17 (1990), 206-237

[12] Timan A.F., Teoriya priblizheniya funktsii deistvitelnogo peremennogo, Fizmatgiz, M., 1960

[13] Natanson I.P., Konstruktivnaya teoriya funktsii, Gos. izd-vo tekhn. teoret. lit., M.–L., 1949

[14] Rokafellar R.T., Vypuklyi analiz, Mir, M., 1973

[15] Musin I.Kh., “Syur'ektivnost lineinogo differentsialnogo operatora v vesovom prostranstve beskonechno differentsiruemykh funktsii”, Matem. zametki, 71:5 (2002), 713–724