Constructive description of a class of periodic functions on the real line
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2023), pp. 36-46
Voir la notice de l'article provenant de la source Math-Net.Ru
With a help of some family ${\mathcal H}$ of convex nondecreasing functions on $[0, \infty)$ we define the space $G({\mathcal H})$ of $2 \pi$-periodic infinitely differentiable functions on the real line with given estimates for all derivatives. A description of the space $G({\mathcal H})$ is obtained in terms of the best trigonometric approximations and the rate of decrease of the Fourier coefficients. There are given families ${\mathcal H}$ for which functions from $G({\mathcal H})$ can be extended to analytic functions in the horizontal strip of the complex plane. An internal description of the space of such extensions is obtained. Examples of a family of convex functions ${\mathcal H}$ are given.
Keywords:
Fourier series, approximation by trigonometric polynomials.
Mots-clés : Fourier coefficients
Mots-clés : Fourier coefficients
@article{IVM_2023_2_a2,
author = {I. Kh. Musin},
title = {Constructive description of a class of periodic functions on the real line},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {36--46},
publisher = {mathdoc},
number = {2},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2023_2_a2/}
}
I. Kh. Musin. Constructive description of a class of periodic functions on the real line. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2023), pp. 36-46. http://geodesic.mathdoc.fr/item/IVM_2023_2_a2/