Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2023_2_a0, author = {Zh. I. Abdullaev and A. M. Khalkhuzhaev and I. A. Khujamiyorov}, title = {Existence condition of an eigenvalue of the three particle {Schr\"{o}dinger} operator on a lattice}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {3--25}, publisher = {mathdoc}, number = {2}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2023_2_a0/} }
TY - JOUR AU - Zh. I. Abdullaev AU - A. M. Khalkhuzhaev AU - I. A. Khujamiyorov TI - Existence condition of an eigenvalue of the three particle Schr\"{o}dinger operator on a lattice JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2023 SP - 3 EP - 25 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2023_2_a0/ LA - ru ID - IVM_2023_2_a0 ER -
%0 Journal Article %A Zh. I. Abdullaev %A A. M. Khalkhuzhaev %A I. A. Khujamiyorov %T Existence condition of an eigenvalue of the three particle Schr\"{o}dinger operator on a lattice %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2023 %P 3-25 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2023_2_a0/ %G ru %F IVM_2023_2_a0
Zh. I. Abdullaev; A. M. Khalkhuzhaev; I. A. Khujamiyorov. Existence condition of an eigenvalue of the three particle Schr\"{o}dinger operator on a lattice. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2023), pp. 3-25. http://geodesic.mathdoc.fr/item/IVM_2023_2_a0/
[1] Mattis D.C., “The few-body problem on lattice”, Rev. Mod. Phys., 58:2 (1986), 361-379
[2] Mogilner A.I., “Hamiltonians of solid state physics at few-particle discrete Schrödinger operators: problems and results”, Adv. Sov. Math., 5 (1991), 139–194
[3] Malyshev V.A., Minlos R.A., Translations of Mathematical Monographs, 143, Amer. Math. Soc., Providence, RI, 1995
[4] Minlos R.A., Mogilner A.I., “Some problems concerning spectra of lattice models”, Schrödinger Operators, Standard and Nonstandard, Proc. Conf. (Dubna, USSR, 6–10 September), eds. P. Exner and P. Seba, World Sci., Singapore, 1989, 243–257
[5] Lakaev S.N., Lakaev Sh.S., “The existence of bound states in a system of three particles in an optical lattice”, J. Phys. A: Math. Theor., 50 (2017), 335202, 17 pp.
[6] Efimov V., “Energy levels arising from resonant two-body forces in a three-body system”, Phys. Lett. B, 33:8 (1970), 563–564
[7] Albeverio S., Hoegh-Krohn R., Wu T.T., “A class of exactly solvable three-body quantum mechanical problems and the universal low energy behavior”, Phys. Lett. A, 83:3 (1981), 105-109
[8] Amado R.D., Noble J.V., “On Efimov's effect: A new pathology of three-particle Systems”, Phys. Lett. B, 35:1 (1971), 25–27
[9] Merkurev S.P., Fadeev L.D., Kvantovaya teoriya rasseyaniya dlya sistem nesklkikh chastits, Nauka, M., 1985
[10] Yafaev D.R., “K teorii diskretnogo spektra trekhchastichnogo operatora Shredingera”, Matem. sb., 94:136 (1974), 567–593
[11] Ovchinnikov Y.N., Sigal I.M., “Number of bound states of three-body systems and Efimov's effect”, Ann. Phys., 123:2 (1979), 274–295
[12] Sobolev A.V., “The Efimov effect. Discrete spectrum asymptotics”, Commun. Math. Phys., 156:1 (1993), 101–126
[13] Tamura H., “Asymptotics for the number of negative eigenvalues of three-body Schrödinger operators with Efimov effect”, Spectral and Scattering Theory and Appl., Advanced Studies in Pure Mathematics, 23, 1994, 311–322
[14] Lakaev S.N., “Ob effekte Efimova v sisteme trekh odinakovykh kvantovykh chastits”, Funkts. analiz i ego pril., 27:3 (1993), 15–28
[15] Gridnev D., “Three resonating fermions in flatland: proof of the super Efimov effect and the exact discrete spectrum asymptotics”, J. Phys. A: Math. Theor., 2014, 505204
[16] Minlos R.A., “Sistema trekh kvantovykh chastits, vzaimodeistvuyuschikh potochechno”, UMN, 69:3 (2014), 145-172
[17] Becker S., Michelangeli A., Ottolini A., “Spectral Analysis of the $2+1$ Fermionic Trimer with Contact Interactions”, Math. Phys. Anal. Geom., 21:4 (2018), 35–42
[18] Basti G., Teta A., “Efimov Effect for a Three-Particle System with Two Identical Fermions”, Ann. Henri Poincar'e, 18 (2017), 3975–4003
[19] Lakaev S.N., Dell'Antonio G.F., Khalkhuzhaev A.M., “Existence of an isolated band of a system of three particles in an optical lattice”, J. Phys. A: Math. Theor., 49:14 (2016), 145204
[20] Dell'Antonio G. F., Muminov Z. I. and Shermatova Y. M., “On the number of eigenvalues of a model operator related to a system of three particles on lattices”, J. Phys. A: Math. Theor., 44:31 (2011), 315302, 27 pp.
[21] Lakaev S.N., Khalkhuzhaev A.M., “O spektre dvukhchastichnogo operatora Shredingera na reshetke”, TMF, 155:2 (2008), 287–300
[22] Albeverio S., Lakaev S.N., Muminov Z.I., “Schrödinger Operators on Lattices. The Efimov Effect and Discrete Spectrum Asymptotics”, Ann. Henri Poincaré, 5:4 (2004), 743–772
[23] Reed M., Simon B., Methods of Modern Mathematical Physics, v. VI, Analysis of Operators, Academic, New York, 1978
[24] Khalkhuzhaev A.M., “Suschestvennyi spektr trekhchastichnogo diskretnogo operatora, sootvetstvuyuschego sisteme tpekh fermionov na reshetke”, Izv. vuzov. Matem., 2017, no. 9, 76-88
[25] Pankov A.A., Lecture Notes on Shrödinger equations, Nova Publ., New York, 2007