About linear homogeneous hypersurfaces in $ \Bbb R^4 $
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2023), pp. 51-74.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article is related to the describing problem of affinely homogeneous hypersurfaces in the space $ \Bbb R^4 $ that have exactly $3$-dimensional affine symmetry algebras. For three types of solvable $3$-dimensional Lie algebras, their linearly homogeneous $3$-dimensional orbits in this space are studied, different from surfaces of the second order and cylindrical surfaces in $ \Bbb R^4 $ (which are of no interest in the problem under discussion). The presence of two nontrivial commutation relations in each of the studied algebras leads to the essential difference between the situation with their orbits in $ \Bbb R^4 $ and the case of a $3$-dimensional Abelian algebra with a large family of affinely distinct (linearly homogeneous) orbits in the same space. It is proved that one of the studied types of Lie algebras does not admit nontrivial $4$-dimensional linear representations at all; a large number of $3$-dimensional orbits of representations of the other two types have rich symmetry algebras. At the same time for one of the three types of Lie algebras, a new family of linearly homogeneous orbits is obtained, which have precisely $3$-dimensional algebras of affine symmetries.
Mots-clés : hypersurface, affine transformftion, Jordan normal matrix form
Keywords: homogeneous manifold, Lie algebra, linear representation, vector field, symbolic calculations.
@article{IVM_2023_1_a3,
     author = {A. V. Loboda and V. K. Kaverina},
     title = {About linear homogeneous hypersurfaces in $ \Bbb R^4 $},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {51--74},
     publisher = {mathdoc},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2023_1_a3/}
}
TY  - JOUR
AU  - A. V. Loboda
AU  - V. K. Kaverina
TI  - About linear homogeneous hypersurfaces in $ \Bbb R^4 $
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2023
SP  - 51
EP  - 74
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2023_1_a3/
LA  - ru
ID  - IVM_2023_1_a3
ER  - 
%0 Journal Article
%A A. V. Loboda
%A V. K. Kaverina
%T About linear homogeneous hypersurfaces in $ \Bbb R^4 $
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2023
%P 51-74
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2023_1_a3/
%G ru
%F IVM_2023_1_a3
A. V. Loboda; V. K. Kaverina. About linear homogeneous hypersurfaces in $ \Bbb R^4 $. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2023), pp. 51-74. http://geodesic.mathdoc.fr/item/IVM_2023_1_a3/

[1] Loboda A.V., “Odnorodnye veschestvennye giperpoverkhnosti v $\mathbb{C}^3$ s dvumernymi gruppami izotropii”, Tr. MIAN, 235, 2001, 114–142

[2] Eastwood M.G., Ezhov V.V., “Homogeneous Hypersurfaces with Isotropy in Affine Four-Space”, Tr. MIAN, 235, 2001, 57–70 | MR

[3] Doubrov B., Medvedev A., The D., “Homogeneous Levi non-degenerate hypersurfaces in $ \Bbb C^3 $”, Math. Zeits., 297 (2021), 669–709 | DOI | MR

[4] Kruglikov B., “Submaximally Symmetric CR-Structures”, J. Geom. Anal., 26:4 (2016), 3090–3097 | DOI | MR

[5] Mozhei N.P., “Odnorodnye podmnogoobraziya v chetyrekhmernoi affinnoi i proektivnoi geometrii”, Izv. vuzov. Matem., 2000, no. 7, 41–52 | MR

[6] Loboda A.V., Darinskii B.M., “Ob orbitakh v $ \Bbb R^4 $ abelevoi $3$-mernoi algebry Li”, UOMSh-2021, Mater. mezhdunarodn. nauchn. konf., v. 1, Ufa, 2021, 239–241

[7] Cartan E., “Sur la géométrie pseudo-conforme des hypersurfaces de l'espace de deux variables complexes”, Ann. Math. Pura Appl., 11:1 (1933), 17–90 | DOI | MR

[8] Mubarakzyanov G.M., “O razreshimykh algebrakh Li”, Izv. vuz. Matem., 1963, no. 1, 114–123 | MR

[9] Dubrovin B.A., Novikov S.P., Fomenko A.T., Sovremennaya geometriya, Nauka, M., 1979 | MR

[10] Zhelobenko D.P., Shtern A.I., Predstavleniya grupp Li, Nauka, M., 1983 | MR

[11] Komrakov B., Tchourioumov A., Mozhey N., Three-dimensional isotropically-faithful homogeneous spaces, Preprints Univ. Oslo 1–3 (35–37), 1993

[12] Doubrov B., Komrakov B., Rabinovich M., “Homogeneous surfaces in the three-dimensional affine geometry”, Geometry and Topology of Submanifolds, VIII (Brussels, 1995/Nordfjordeid, 1995), World Sci. Publ., River Edge, NJ, 1996, 168–178 | MR

[13] Atanov A.V., Nguen T.T.Z., “Primery odnorodnykh indefinitno-vyrozhdennykh giperpoverkhnostei v $ \Bbb R^4 $”, VZMSh-2022, Mater. mezhdunarodn. nauchn. konf., Izd. dom VGU, Voronezh, 2022, 17–20

[14] Winternitz P., “Subalgebras of Lie algebras. Example of $sl(3, \Bbb R )$”, Simmetry in Phys., CRM Proceedings and Lect. Notes, 34, Providence, RI, USA, 2004, 215–227 | DOI | MR

[15] Thompson G., Wick Z., “Subalgebras of $ gl(3,\Bbb R)$”, Extracta Mathematica, 27:2 (2012), 201–230 | MR

[16] Gantmakher F.R., Teoriya matrits, Nauka, M., 1968 | MR

[17] Bishop R.L., Krittenden R. Dzh., Geometriya mnogoobrazii, Mir, M., 1967