Main properties of the Faddeev equation for $2 \times 2$ operator matrices
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2023), pp. 53-58
Voir la notice de l'article provenant de la source Math-Net.Ru
In the present paper we consider a $2 \times 2$ operator matrix $H$. We construct an analog of the well-known Faddeev equation for the eigenvectors of $H$ and study some important properties of this equation, related with the number of eigenvalues. In particular, the Birman–Schwinger principle for $H$ is proven.
Keywords:
operator matrix, spectrum, Faddeev equation, operator valued function, Birman–Schwinger principle.
@article{IVM_2023_12_a3,
author = {T. H. Rasulov and E. B. Dilmurodov},
title = {Main properties of the {Faddeev} equation for $2 \times 2$ operator matrices},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {53--58},
publisher = {mathdoc},
number = {12},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2023_12_a3/}
}
TY - JOUR AU - T. H. Rasulov AU - E. B. Dilmurodov TI - Main properties of the Faddeev equation for $2 \times 2$ operator matrices JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2023 SP - 53 EP - 58 IS - 12 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2023_12_a3/ LA - ru ID - IVM_2023_12_a3 ER -
T. H. Rasulov; E. B. Dilmurodov. Main properties of the Faddeev equation for $2 \times 2$ operator matrices. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2023), pp. 53-58. http://geodesic.mathdoc.fr/item/IVM_2023_12_a3/