Main properties of the Faddeev equation for $2 \times 2$ operator matrices
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2023), pp. 53-58

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper we consider a $2 \times 2$ operator matrix $H$. We construct an analog of the well-known Faddeev equation for the eigenvectors of $H$ and study some important properties of this equation, related with the number of eigenvalues. In particular, the Birman–Schwinger principle for $H$ is proven.
Keywords: operator matrix, spectrum, Faddeev equation, operator valued function, Birman–Schwinger principle.
@article{IVM_2023_12_a3,
     author = {T. H. Rasulov and E. B. Dilmurodov},
     title = {Main properties of the {Faddeev} equation for $2 \times 2$ operator matrices},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {53--58},
     publisher = {mathdoc},
     number = {12},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2023_12_a3/}
}
TY  - JOUR
AU  - T. H. Rasulov
AU  - E. B. Dilmurodov
TI  - Main properties of the Faddeev equation for $2 \times 2$ operator matrices
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2023
SP  - 53
EP  - 58
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2023_12_a3/
LA  - ru
ID  - IVM_2023_12_a3
ER  - 
%0 Journal Article
%A T. H. Rasulov
%A E. B. Dilmurodov
%T Main properties of the Faddeev equation for $2 \times 2$ operator matrices
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2023
%P 53-58
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2023_12_a3/
%G ru
%F IVM_2023_12_a3
T. H. Rasulov; E. B. Dilmurodov. Main properties of the Faddeev equation for $2 \times 2$ operator matrices. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2023), pp. 53-58. http://geodesic.mathdoc.fr/item/IVM_2023_12_a3/