A problem in an unbounded domain with combined Tricomi and Frankl conditions on one boundary characteristic for one class of mixed type equations
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2023), pp. 39-52.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this work, in an unbounded domain, we prove the cof the problem with combined Tricomi and Frankl conditions on one boundary characteristic for one class of equations of mixed type.
Keywords: unbounded domain, equation of mixed type, combined Tricomi and Frankl condition, singular integral equation of the first and second kind.
Mots-clés : singular coefficient
@article{IVM_2023_12_a2,
     author = {M. Mirsaburov and R. N. Turaev},
     title = {A problem in an unbounded domain with combined {Tricomi} and {Frankl} conditions on one boundary characteristic for one class of mixed type equations},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {39--52},
     publisher = {mathdoc},
     number = {12},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2023_12_a2/}
}
TY  - JOUR
AU  - M. Mirsaburov
AU  - R. N. Turaev
TI  - A problem in an unbounded domain with combined Tricomi and Frankl conditions on one boundary characteristic for one class of mixed type equations
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2023
SP  - 39
EP  - 52
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2023_12_a2/
LA  - ru
ID  - IVM_2023_12_a2
ER  - 
%0 Journal Article
%A M. Mirsaburov
%A R. N. Turaev
%T A problem in an unbounded domain with combined Tricomi and Frankl conditions on one boundary characteristic for one class of mixed type equations
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2023
%P 39-52
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2023_12_a2/
%G ru
%F IVM_2023_12_a2
M. Mirsaburov; R. N. Turaev. A problem in an unbounded domain with combined Tricomi and Frankl conditions on one boundary characteristic for one class of mixed type equations. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2023), pp. 39-52. http://geodesic.mathdoc.fr/item/IVM_2023_12_a2/

[1] Trikomi F., O lineinykh uravneniyakh v chastnykh proizvodnykh vtorogo poryadka smeshannogo tipa, Gostekhizdat, M.–L., 1947

[2] Frankl F.I., “Obtekanie profilei potokom dozvukovoi skorosti so sverkhzvukovoi zonoi, okanchivayuscheisya pryamym skachkom uplotneniya”, Prikl. matem. i mekhan., 20:2 (1956), 196–202 | Zbl

[3] Devengtal Yu.V., “O suschestvovanii i edinstvennosti resheniya odnoi zadachi F.I. Franklya”, Izv. vuzov. Matem., 1958, no. 2, 39–51

[4] Lin Tszyan-bin, “O nekotorykh zadachakh Franklya”, Vestn. LGU. Matem. mekhan. i astronomiya, 3:13 (1961), 28–39 | Zbl

[5] Babenko K.I., K teorii uravnenii smeshannogo tipa, Diss. ... dokt. fiz.-matem. nauk, Ros. nats. bib-ka, 1952

[6] Salakhitdinov M.S., Mirsaburov M., Nelokalnye zadachi dlya uravnenii smeshannogo tipa s singulyarnymi koeffitsientami, Univ., Tashkent, 2005

[7] Zhegalov V.I., “Kraevaya zadacha dlya uravneniya smeshannogo tipa s granichnymi usloviyami na obeikh kharakteristikakh i razryvnymi na perekhodnoi linii”, Uchen. zap. Kazan. un-ta, 122:3 (1962), 3–16 | MR | Zbl

[8] Nakhushev A.M., “O nekotorykh kraevykh zadachakh dlya giperbolicheskikh uravnenii i uravnenii smeshannogo tipa”, Differents. uravneniya, 5:1 (1969), 44–59 | Zbl

[9] Mirsaburova G.M., “Zadacha s analogom usloviya Bitsadze–Samarskogo dlya odnogo klassa vyrozhdayuschikhsya giperbolicheskikh uravnenii”, Izv. vuzov. Matem., 2022, no. 6, 54–59 | MR | Zbl

[10] Bitsadze A.V., Nekotorye klassy uravnenii v chastnykh proizvodnykh, Nauka, M., 1981 | MR

[11] Smirnov M.M., Uravneniya smeshannogo tipa, Vyssh. shkola, M., 1985

[12] Mirsaburova U.M., “Zadacha so smescheniem na vnutrennikh kharakteristikakh v neogranichennoi oblasti dlya uravneniya Gellerstedta s singulyarnym koeffitsientom”, Izv. vuzov. Matem., 2022, no. 9, 70–82 | Zbl

[13] Prudnikov A.P., Brychkov Yu.A., Integraly i ryady, Nauka, M., 1981 | MR