Generalized integration over non-recifiable flat curves and boundary value problems
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2023), pp. 17-38.

Voir la notice de l'article provenant de la source Math-Net.Ru

The review discusses two closely related problems: the solution of the Riemann boundary value problem for analytic functions and some of their generalizations in areas of the complex plane with non-rectifiable boundaries, and the construction of a generalization of the curvilinear integral to non-rectifiable curves that preserves properties important for complex analysis. This work reflects the current state of the issue, and many of the results presented in it were obtained quite recently. At the end of the article, readers are offered a number of unsolved problems, each of which can serve as a starting point for scientific research.
Keywords: Riemann boundary-value problem, curvilinear integral.
Mots-clés : non-rectifiable curve
@article{IVM_2023_12_a1,
     author = {D. B. Katz},
     title = {Generalized integration over non-recifiable flat curves and boundary value problems},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {17--38},
     publisher = {mathdoc},
     number = {12},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2023_12_a1/}
}
TY  - JOUR
AU  - D. B. Katz
TI  - Generalized integration over non-recifiable flat curves and boundary value problems
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2023
SP  - 17
EP  - 38
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2023_12_a1/
LA  - ru
ID  - IVM_2023_12_a1
ER  - 
%0 Journal Article
%A D. B. Katz
%T Generalized integration over non-recifiable flat curves and boundary value problems
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2023
%P 17-38
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2023_12_a1/
%G ru
%F IVM_2023_12_a1
D. B. Katz. Generalized integration over non-recifiable flat curves and boundary value problems. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2023), pp. 17-38. http://geodesic.mathdoc.fr/item/IVM_2023_12_a1/

[1] Gakhov F.D., Kraevye zadachi, Nauka, M., 1977

[2] Muskhelishvili H.I., Singulyarnye integralnye uravneniya, 2-e izd., Fizmatlit, M., 1962 | MR

[3] Gakhov F.V., Cherskii Yu.I., Uravneniya tipa svertki, Nauka, M., 1978 | MR

[4] Govorov N.V., Kraevaya zadacha Rimana s beskonechnym indeksom, Nauka, M., 1986

[5] Danilyuk I.I., Neregulyarnye granichnye zadachi na ploskosti, Nauka, M., 1975

[6] Koen Dzh., Boksma O., Granichnye zadachi v teorii massovogo obsluzhivaniya, Mir, M., 1987 | MR

[7] Litvinchuk G.S., Kraevye zadachi i sngulyarnye integralne uravneniya so sdvigom, Nauka, M., 1977

[8] Litvinchuk G.S., Spitkovskii I.M., Faktorizatsiya matrits-funktsii, Dep. No 2410–84 v VINITI, M., 1984

[9] Salimov R.B., Shabalin P.L., Kraevaya zadacha Gilberta teorii analiticheskikh funktsii i ee prilozheniya, Izd. tsentr KGU, Kazan, 2005

[10] Soldatov A.P., Odnomernye singulyarnye operatory i kraevye zadachi teorii funktsii, Vyssh. shk., M., 1991

[11] Chibrikova L.I., Osnovnye granichnye zadachi dlya analiticheskikh funktsii, Izd-vo Kazansk. un-ta, Kazan, 1977

[12] Cai Hai-Tao and Lu Jian-Ke, Mathematical theory in periodic plane elasticity, Asian Math. Ser., 4, Overseas Publ. Association, Singapore, 2010 | MR

[13] Deift P., “Orthogonal Polynomials and Random Matrices: A Riemann–Hilbert Approach”, Courant Lecture Notes, 3, New York Univ., 1999 | MR

[14] Fokas A.S., Its A.R., Kapaev A.A., Novokshenov V.Y., Painlevé Transcendents: The Riemann–Hilbert Approach, Mathematical Surveys and Monographs, 128, AMS, Providence R.I., 2006 | DOI | MR

[15] Lu Jian-Ke, Boundary Value Problems for Analytic Functions, World Scientific, 1993 | MR | Zbl

[16] Su Weiyi, Harmonic Analysis and Fractal Analysis over Fields and Applications, World Scientific, New Jersey, 2016

[17] Trogdon T., Olver S.R., Riemann–Hilbert Problems, Their Numerical Solution, and the Computation of Nonlinear Special Functions, SIAM, Philadelphia, 2016 | MR | Zbl

[18] Khermander L., Analiz lineinykh differentsialnykh operatorov s chastnymi proizvodnymi, v. I, Teoriya raspredelenii i analiz Fure, Mir, M., 1986

[19] Stein I., Singulyarnye integraly i differentsialnye svoistva funktsii, Mir, M., 1973

[20] Falconer K.J., Fractal geometry, 3rd ed., Wiley and Sons, 2014 | MR | Zbl

[21] Tricot C., Curves and Fractal Dimension, Springer-Verlag, New York, 1995 | MR | Zbl

[22] Kats B.A., “Zadacha Rimana na zamknutoi zhordanovoi krivoi”, Izv. vuz. Matem., 1983, no. 4, 68–80 | Zbl

[23] Kats D.B., “O nekotorykh novykh metricheskikh kharakteristikakh nespryamlyaemykh krivykh i ikh prilozheniyakh”, Tr. matem. tsentra im. N.I. Lobachevskogo, 46 (2013), 235–236

[24] Markushevich A.I., Izbrannye glavy teorii analiticheskikh funktsii, Nauka, M., 1976

[25] Dolzhenko E.P., “O «stiranii» osobennostei analiticheskikh funktsii”, Uspekhi matem. nauk, 18:4 (1963), 135–142 | MR | Zbl

[26] Vekua I.N., Obobschennye analiticheskie fuktsii, Nauka, M., 1988

[27] Gehring F.W., Hayman W.K. and Hinkkanen A., “Analytic functions satisfying Hölder conditions on the boundary”, J. Approx. Theory, 35:3 (1982), 243–249 | DOI | MR | Zbl

[28] Kats B.A., “Zadacha Rimana na razomknutoi zhordanovoi krivoi”, Izv. vuzov. Matem., 1983, no. 12, 30–38 | Zbl

[29] Balk M.B., “Polianaliticheskie funktsii i ikh obobscheniya”, Itogi nauki i tekhn. Ser. Sovrem. probl. matem. Fundam. napravleniya, 85, VINITI, M., 1991, 187–246

[30] Katz D.B. and Kats B.A., “Non-rectifiable Riemann boundary value problem for bi-analytic functions”, Complex Variables and Elliptic Equat., 66:5 (2021), 843–852 | DOI | MR | Zbl

[31] Bojarski B., “Old and New on Beltrami Equations”, Functional analytic methods in complex analysis and applications to partial differential equations, Proceedings of the ICTP (Trieste, Italy, Feb. 8–19, 1988) | MR

[32] Iwaniec T. and Martin G., What's new for the Beltrami equation?, Geometric Analysis and Applications, Proc. Centre Math. Appl., 39, 2001, 132–148 | MR | Zbl

[33] Tungatarov A.B., “O prilozhenii nekotorykh integralnykh operatorov v teorii obobschennykh analiticheskikh funktsii”, Izv. AN Kazakhskoi SSR. Ser. fiz.-matem., 134:1 (1987), 51–54 | MR | Zbl

[34] Katz D.B. and Kats B.A., “Riemann boundary value problem on nonrectifiable curves for certain Beltrami equations”, Math. Meth. Appl. Sci., 41:6 (2018), 2507–2514 | DOI | MR | Zbl

[35] Kats D.B., Kats B.A., “Analog formuly Koshi dlya nekotorykh uravnenii Beltrami”, Uchen. zap. Kazan. un-ta. Ser. fiz.-matem. nauki, 161, no. 4, 2019 | MR

[36] Kats B.A., “The Cauchy integral over non-rectifiable paths”, Contemporary Math., 455, 2008, 183–196 | DOI | MR | Zbl

[37] Kats B.A., “The Cauchy integral along $\Phi-$rectifiable curves”, Lobatchevskii J. Math., 7 (2000), 15–29 | MR | Zbl

[38] Natanson I. P., Teoriya funktsii veschestvennoi peremennoi, 3-e izd., Nauka, M., 1974 | MR

[39] Fikhtengolts G. M., Kurs differentsialnogo i integralnogo ischisleniya, v. III, Nauka, M., 1960

[40] Lesniewicz R., Orlitz W., “On generalized variation II”, Studia Math., 45:1 (1973), 71–109 | DOI | MR

[41] Kondurar V., “Sur l'integrale de Stieltjes”, Rec. Math., 2(44):2 (1937), 361–366 | Zbl

[42] Kats B.A., “Ob integrirovanii po nespryamlyaemoi krivoi”, Voprosy matematiki, mekhaniki sploshnykh sred i primeneniya matematicheskikh metodov v stroitelstve, Sb. nauchn. tr., Moskovskii inzhenerno-stroitelnyi institut, M., 1982, 63–69

[43] Harrison J. and Norton A., “Geometric integration on fractal curves in the plane”, Indiana Univ. Math. J., 40:2 (1991), 567–594 | DOI | MR | Zbl

[44] Harrison J. and Norton A., “The Gauss-Green theorem for fractal boundaries”, Duke Math. J., 67:3 (1992), 575–588 | DOI | MR | Zbl

[45] Harrison J., “Lectures on chainlet geometry – new topological methods in geometric measure theory”, Proceedings of Ravello Summer School for Mathematical Physics, 2005; 24 May 2005, arXiv: math-ph/0505063v1

[46] Kats B.A., “O nekotorykh obobscheniyakh ponyatiya dliny”, Matem. zametki, 70:6 (2001), 875–881 | DOI | Zbl

[47] Kats B.A., “The Inequalities for Polynomials and Integration over Fractal Arcs”, Canadian Math. Bull., 44:1 (2001), 61–69 | DOI | MR | Zbl

[48] Gamelin T.V., Ravnomernye algebry, Mir, M., 1973

[49] Guseynov Y., “Integrable boundaries and fractals for Hölder classes; the Gauss-Green theorem”, Calculus Variations and Partial Diff. Equat., 55:4 (2016), 1–27 | MR

[50] Guseynov Y., Seif R., “Contour Integrals, Plemelj-Privalov Theorem on Non-rectifiable Jordan Curves and Applications”, Integral and Differential Operators and Their Applications, An International Conference in Honour of Professor Stefan Samko on the occasion of his 70th birthday (University of Aveiro, Portugal, 30 June - 2 July, 2011) | MR

[51] Guseynov Y., “Summability on non-rectifiable Jordan curves”, Georgian Math. J., 2018, February | MR

[52] Paley R.E.A.C., Wiener N. and Zygmund A., “Notes on random functions”, Math. Z., 37:1 (1933), 647–668 | DOI | MR | Zbl

[53] Abreu-Blaya R., Bory-Reyes J., Kats B.A., “Integration over non-rectifiable curves and Riemann boundary value problems”, J. Math. Anal. and Appl., 380:1 (2011), 177–187 | DOI | MR | Zbl

[54] Kats B.A. and Katz D.B., “Marcinkiewicz exponents and integrals over non-rectifiable paths”, Math. Meth. Appl. Sci., 39:12 (2016), 3402–3410 | DOI | MR | Zbl

[55] Chirka E.M., Kompleksnye analiticheskie mnozhestva, Nauka, M., 1985

[56] Liu H., “A note about Riemann boundary value problems on non-rectifiable curves”, Complex Var. Elliptic Equ., 52:10–11 (2007), 877–882 | MR | Zbl

[57] Antontsev S.N., Monakhov V.N., “Kraevye zadachi sopryazheniya so sdvigom v mnogosvyaznykh oblastyakh dlya kvazilineinykh eddipticheskikh sistem uravnenii pervogo poryadka”, Tr. simpoz. po mekhan. splosh. sredy i rodstv. probl. analiza (Tbilisi, Metsnierba), v. 2, 1871, 20–35

[58] Seleznev V.A., “Kraevaya zadacha Gazemana na rimanovykh poverkhnostyakh v klassakh kvazikonformnykh konturov i sdvigov”, Dinamika sploshnoi sredy, 13, Novosibirsk, 1973, 99–113

[59] Seleznev V.A., “Singulyarnye uravneniya na kvazikonformnykh konturakh”, Metodich. voprosy teorii funktsii i otobrazhenii, 7, Naukova dumka, Kiev, 1975, 130–147

[60] Batchaev I.M., Teoriya integrala Koshi i singulyarnykh integralnykh uravnenii na kompaktakh kompleksnoi ploskosti, Izd-vo YuFU, Rostov-na-Donu, 2012

[61] Schippers E., Staubach W., “Riemann Boundary Value Problem on Quasidisks. Faber Isomorphism and Grunsky Operator”, Complex Anal. Oper. Theory, 12 (2018), 325–354 | DOI | MR | Zbl

[62] Dynkin E.M., “Gladkost integralov tipa Koshi”, Zap. nauchn. sem. LOMI AN SSSR, 92, 1979, 115–133 | Zbl

[63] Salimov T.S., “Pryamaya otsenka dlya singulyarnogo integrala Koshi po zamknutoi krivoi”, Nauchn. tr. MV i SSO Azerb. SSR, 1979, no. 5, 59–75

[64] Kats B.A., “Kraevaya zadacha Rimana na nespryamlyaemoi zhordanovoi krivoi”, DAN SSSR, 267:4 (1982), 789–792 | MR | Zbl

[65] Kats B.A., “Kraevaya zadacha Rimana na negladkikh dugakh i fraktalnye razmernosti”, Algebra i Analiz, 6:1 (1994), 172–202

[66] Kats B.A., “The Riemann boundary value problem on non-rectifiable curves and related questions”, Complex Variables and Elliptic Equat., 59:8 (2014), 1053–1069 | DOI | MR | Zbl

[67] Katz D.B., Kats B.A., “Interactions of germs with applications”, Math. Meth. Appl. Sci., 22 February 2017 | DOI | MR

[68] Khavin V.P., “O vydelenii osobennostei analiticheskikh funktsii”, DAN SSSR, 121:2 (1958), 239–242 | Zbl

[69] Khavin V.P., “Odin analog ryada Lorana”, Issledovaniya po sovremennym problemam teorii funktsii kompleksnogo peremennogo, Sb. statei, ed. A.I. Markushevich, Fizmatlit, M., 1961, 121–131 | MR

[70] Goldshtein V.M., Reshetnyak Yu.G., Vvedenie v teoriyu funktsii s obobschennymi proizvodnymi i kvazikonformnye otobrazheniya, Nauka, M., 1983 | MR

[71] Assouad P., Espaces métriques, plongements, facteurs, These de doctorat d'Etat, Publ. Math. Orsay, no. 7769, Univ. Paris XI, Orsay, 1977 | MR

[72] Assouad P., “Étude d'une dimension métrique liée à la possibilité de plongements dans ${\mathbb R}^n$”, C. R. Acad. Sci. Paris Ser. A–B, 288 (1979), 731–734 | MR | Zbl

[73] Aikawa H., “Quasiadditivity of Riesz capacity”, Math. Scand., 69 (1991), 15–30 | DOI | MR | Zbl

[74] Käenmäki A., Lehrbäck J., Vuorinen M., “Dimension, Whitney covers, and tubular neighborhoods”, Indiana Univ. Math. J., 62:6 (2013), 1861–1889 | DOI | MR | Zbl

[75] Fraser J.M., Yu Han, “New dimension spectra: Finer information on scaling and homogeneity”, Advances in Math., 329 (2018), 273–328 | DOI | MR | Zbl