Invariant subspaces in nonquasianalytic spaces of $\Omega$-ultradifferentiable functions on an interval
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2023), pp. 86-91.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we consider a weakened version of the spectral synthesis for the differentiation operator in nonquasianalytic spaces of ultradifferentiable functions. We deal with the widest possible class of spaces of ultradifferentiable functions among all known ones. Namely, these are spaces of $\Omega$-ultradifferentiable functions which have been recently introduced and explored by A.V. Abanin. For differentiation invariant subspaces in these spaces, we establlish conditions of weak spectral synthesis. As an application, we prove that a kernel of a local convolution operator admits weak spectral synthesis. We also show that a conjunction of kernels of convolution operators admits weak spectral synthesis if all generating ultradistributions have the same support equaled to $\{0\}$ and there exists one generated by an ultradistribution which characteristic function is a multiplier in the corresponding space of entire functions.
Keywords: ultradifferentiable functions, invariant subspaces, spectral synthesis.
Mots-clés : ultradistributions, Fourier-Laplace transform
@article{IVM_2023_11_a6,
     author = {N. F. Abuzyarova},
     title = {Invariant subspaces in nonquasianalytic spaces of $\Omega$-ultradifferentiable functions on an interval},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {86--91},
     publisher = {mathdoc},
     number = {11},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2023_11_a6/}
}
TY  - JOUR
AU  - N. F. Abuzyarova
TI  - Invariant subspaces in nonquasianalytic spaces of $\Omega$-ultradifferentiable functions on an interval
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2023
SP  - 86
EP  - 91
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2023_11_a6/
LA  - ru
ID  - IVM_2023_11_a6
ER  - 
%0 Journal Article
%A N. F. Abuzyarova
%T Invariant subspaces in nonquasianalytic spaces of $\Omega$-ultradifferentiable functions on an interval
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2023
%P 86-91
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2023_11_a6/
%G ru
%F IVM_2023_11_a6
N. F. Abuzyarova. Invariant subspaces in nonquasianalytic spaces of $\Omega$-ultradifferentiable functions on an interval. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2023), pp. 86-91. http://geodesic.mathdoc.fr/item/IVM_2023_11_a6/

[1] Krasichkov–Ternovskii I.F., “Invariantnye podprostranstva analiticheskikh funktsii. I: Spektralnyi sintez na vypuklykh oblastyakh”, Matem. sb., 87(129):4 (1972), 459–489

[2] Krasichkov–Ternovskii I.F., “Invariantnye podprostranstva analiticheskikh funktsii. II: Spektralnyi sintez na vypuklykh oblastyakh”, Matem. sb., 88(130):1(5) (1972), 3–30 | MR

[3] Krasichkov–Ternovskii I.F., “Invariantnye podprostranstva analiticheskikh funktsii. III: O rasprostranenii spektralnogo sinteza”, Matem. sb., 88(130):3(7) (1972), 331–352

[4] Schwartz L., “Théorie générale des fonctions moyenne-périodiques”, Ann. Math., 48:4 (1947), 857–929 | DOI | MR | Zbl

[5] Schwartz L., Théorie des distributions, v. I, Hermann, Paris, 1951 | MR

[6] Schwartz L., Théorie des distributions, v. II, Hermann, Paris, 1952 | MR

[7] Aleman A., Korenblum B., “Derivation-invariant subspaces of $C^\infty $”, Comput. Meth. Funct. Theory, 8:2 (2008), 493–512 | DOI | MR | Zbl

[8] Abuzyarova N.F., “Spektralnyi sintez v prostranstve Shvartsa beskonechno differentsiruemykh funktsii”, Dokl. RAN, 457:5 (2014), 510–513 | DOI | Zbl

[9] Aleman A., Baranov A., Belov Yu., “Subspaces of $C^\infty $ invariant under the differentiation”, J. Func. Anal., 268:8 (2015), 2421–2439 | DOI | MR | Zbl

[10] Abuzyarova N.F., “Spektralnyi sintez dlya operatora differentsirovaniya v prostranstve Shvartsa”, Matem. zametki, 102:2 (2017), 163–177 | DOI | MR

[11] Baranov A., Belov Yu., “Synthesizable differentiation-invariant subspaces”, Geom. Funct. Anal., 29:1 (2019), 44–71 | DOI | MR | Zbl

[12] Abuzyarova N.F., “Glavnye podmoduli v module Shvartsa”, Izv. vuzov. Matem., 2020, no. 5, 83–88 | MR | Zbl

[13] Abuzyarova N.F., “Predstavlenie invariantnykh podprostranstv v prostranstve Shvartsa”, Matem. sb., 213:8 (2022), 3–25 | DOI | MR

[14] Abuzyarova N.F., “Differentiation operator in the Beurling space of ultradifferentiable functions of normal type on an interval”, Lobachevskii J. Math., 43:6 (2022), 1472–1485 | DOI | MR | Zbl

[15] Abanin A.V., Ultradifferentsiruemye funktsii i ultraraspredeleniya, Nauka, M., 2007

[16] Abanin A.V., “$\Omega$-ultraraspredeleniya”, Izv. RAN, Ser. Matem., 72:2 (2008), 207–240 | DOI | MR | Zbl

[17] Koosis P., The logarithmic integral, v. II, Cambridge Univ. Press, Cambridge, 1992 | MR | Zbl