Approximation of the Lebesgue constant of the Fourier operator by a logarithmic-fractional-rational function
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2023), pp. 75-85.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Lebesgue constant of the classical Fourier operator is uniformly approximated by a logarithmic-fractional-rational function depending on three parameters; they are defined using the specific properties of logarithmic and rational approximations. A rigorous study of the corresponding residual term having an indefinite (non-monotonic) behavior has been carried out. The obtained approximation results strengthen the known results by more than two orders of magnitude.
Mots-clés : Lebesgue constant of the Fourier operator, two-way estimation of the Lebesgue constant
Keywords: fractional rational function, asymptotic formula, extreme problem, approximation error.
@article{IVM_2023_11_a5,
     author = {I. A. Shakirov},
     title = {Approximation of the {Lebesgue} constant of the {Fourier} operator by a logarithmic-fractional-rational function},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {75--85},
     publisher = {mathdoc},
     number = {11},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2023_11_a5/}
}
TY  - JOUR
AU  - I. A. Shakirov
TI  - Approximation of the Lebesgue constant of the Fourier operator by a logarithmic-fractional-rational function
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2023
SP  - 75
EP  - 85
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2023_11_a5/
LA  - ru
ID  - IVM_2023_11_a5
ER  - 
%0 Journal Article
%A I. A. Shakirov
%T Approximation of the Lebesgue constant of the Fourier operator by a logarithmic-fractional-rational function
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2023
%P 75-85
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2023_11_a5/
%G ru
%F IVM_2023_11_a5
I. A. Shakirov. Approximation of the Lebesgue constant of the Fourier operator by a logarithmic-fractional-rational function. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2023), pp. 75-85. http://geodesic.mathdoc.fr/item/IVM_2023_11_a5/

[1] Fejer L., “Lebesguesche Konstanten und divergente Fourierreihen”, J. Reine Angew. Math., 138 (1910), 22–53 | DOI | MR

[2] Fejer L., “Sur les singularités de la série de Fourier des fonctions continues”, Ann. Éc. Norm. Sup., 28 (1911), 63–103 | DOI | MR

[3] Szego G., “Über die Lebesgueschen Konstanten bei den Fourierchen Reihen”, Math. Z., 9:1–2 (1921), 163–166 | DOI | MR

[4] Hardy G.H., “Note on Lebesgués Constants in the Theory of Fourier Series”, J. London Math. Soc., s1–17:1 (1942), 4–13 | DOI | MR | Zbl

[5] Watson G.N., “The constants of Landau and Lebesgue”, Quart. J. Math. Ser., 1:2 (1930), 310–318 | DOI

[6] Wong R., Asymptotic approximations of integrals, SIAM, 2001 | MR | Zbl

[7] Galkin P.V., “Otsenki dlya konstant Lebega”, Tr. MIAN SSSR, 109, 1971, 3–5 | MR | Zbl

[8] Zhuk V.V., Natanson G.I., Trigonometricheskie ryady Fure i elementy teorii approksimatsii, Uchebnoe posobie, Izd-vo LGU, L., 1983 | MR

[9] Akhiezer N.I., Lektsii po teorii approksimatsii, Nauka, M., 1965 | MR

[10] Shakirov I.A., “O neuluchshaemoi dvustoronnei otsenke konstanty Lebega klassicheskogo operatora Fure”, Vestn. Kazansk. gos. energetichesk. un-ta, 34:2 (2017), 7–17

[11] Shakirov I.A., “Ob optimalnom priblizhenii normy operatora Fure semeistvom logarifmicheskikh funktsii”, Itogi nauki i tekhn. Ser. Sovremen. matem. i ee prilozh. Temat. obz., 139, 2017, 104–113

[12] Shakirov I.A., “About the Optimal Replacement of the Lebesque Constant Fourier Operator by a Logarithmic Function”, Lobachevskii J. Math., 39:6 (2018), 841–846 | DOI | MR | Zbl

[13] Shakirov I.A., “On optimal approximations of the norm of the Fourier operator by a family of logarithmic functions”, J. Math. Sci., 241:3 (2019), 354–363 | DOI | MR | Zbl

[14] Shakirov I.A., “Priblizhenie konstanty Lebega operatora Fure logarifmicheskoi funktsiei”, Izv. vuzov. Matem., 2022, no. 5, 86–93

[15] Zhao D., “Some sharp estimates of the constants of Landau and Lebesgue”, J. Math. Anal. Appl., 349:1 (2009), 68–73 | DOI | MR | Zbl

[16] Chen C., Choi J., “Inequalities and asymptotic expansions for the constants of Landau and Lebesgue”, Appl. Math. Comput., 248 (2014), 610–624 | MR | Zbl

[17] Chen C., Choi J., “Unified treatment of several asymptotic expansions concerning some mathematical constant”, Appl. Math. Comput., 305 (2017), 348–363 | MR | Zbl