Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2023_11_a0, author = {D. K. Durdiev and J. Z. Nuriddinov}, title = {Uniqueness of the kernel determination problem in an integro-differential parabolic equation with variable coefficient}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {3--14}, publisher = {mathdoc}, number = {11}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2023_11_a0/} }
TY - JOUR AU - D. K. Durdiev AU - J. Z. Nuriddinov TI - Uniqueness of the kernel determination problem in an integro-differential parabolic equation with variable coefficient JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2023 SP - 3 EP - 14 IS - 11 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2023_11_a0/ LA - ru ID - IVM_2023_11_a0 ER -
%0 Journal Article %A D. K. Durdiev %A J. Z. Nuriddinov %T Uniqueness of the kernel determination problem in an integro-differential parabolic equation with variable coefficient %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2023 %P 3-14 %N 11 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2023_11_a0/ %G ru %F IVM_2023_11_a0
D. K. Durdiev; J. Z. Nuriddinov. Uniqueness of the kernel determination problem in an integro-differential parabolic equation with variable coefficient. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2023), pp. 3-14. http://geodesic.mathdoc.fr/item/IVM_2023_11_a0/
[1] Lorenzi A., Sinestrari E., “An inverse problem in theory of materials with memory”, Nonlinear Anal. TMA, 12:12 (1988), 1317–1335 | DOI | MR | Zbl
[2] Grasselli M., “An identification problem for a linear integro-differential equation occurring in heat flow”, Math. Meth. Appl. Sci., 15:3 (1992), 167–186 | DOI | MR | Zbl
[3] Janno J., Wolfersdorf L.V., “Inverse problems for identification of memory kernels in heat flow”, J. Inverse Ill-Posed Problems, 4:1 (1996), 39–66 | DOI | MR | Zbl
[4] Colombo F., “An inverse problem for a parabolic integro-differential model in the theory of combustion”, Phys. D Nonlinear Phenom., 236:2 (2007), 81–89 | DOI | MR | Zbl
[5] Janno J., Lorenzi A., “Recovering memory kernels in parabolic transmission problems”, J. Inverse Ill-Posed Probl., 16:3 (2008), 239–265 | DOI | MR | Zbl
[6] Totieva Zh.D., Durdiev D.K., “The problem of finding the one-dimensional kernel of the thermoviscoelasticity equation”, Math. Notes, 103:1 (2018), 118–132 | DOI | MR | Zbl
[7] Durdiev D.K., Rahmonov A.A., “A $2$D kernel determination problem in a visco-elastic porous medium with a weakly horizontally inhomogeneity”, Math. Meth. Appl. Sci., 43:15 (2020), 8776–8796 | DOI | MR | Zbl
[8] Romanov V.G., “Stability estimates for the solution to the problem of determining the kernel of a viscoelastic equation”, Appl. Ind. Math., 6:3 (2012), 360–370 | DOI | MR | Zbl
[9] Romanov V.G., “Inverse problems for differential equations with memory”, Eurasian J. Math. Comput. Appl., 2:4 (2014), 51–80 | MR
[10] Durdiev U.D., Totieva Zh.D., “A problem of determining a special spatial part of 3D memory kernel in an integro-differential hyperbolic equation”, Math. Meth. Appl. Sci., 42:18 (2019), 7440–7451 | DOI | MR | Zbl
[11] Durdiev U.D., Totieva Zh.D., “The problem of determining the one-dimensional matrix kernel of the system of viscoelasticity equation”, Math. Meth. Appl. Sci., 41:17 (2018), 8019–8032 | DOI | MR | Zbl
[12] Durdiev D.K., Totieva Zh.D., “The problem of determining the one dimensional kernel of viscoelasticity equation with a source of explosive type”, J. Inverse Ill Posed Probl., 28:1 (2019), 1–10 | MR
[13] Totieva Zh.D., “The problem of determining the piezoelectric module of electro viscoelasticity equation”, Math. Meth. Appl. Sci., 41:16 (2018), 6409–6421 | DOI | MR | Zbl
[14] Durdiev D.K., “Global solvability of an inverse problem for an integro-differential equation of electrodynamics”, Diff. Equat., 44:7 (2008), 893–899 | DOI | MR | Zbl
[15] Hazanee A., Lesnic D., Ismailov M.I., Kerimov N.B., “Inverse time-dependent source problems for the heat equation with nonlocal boundary conditions”, Appl. Math. Comput., 346 (2019), 800–815 | MR | Zbl
[16] Huntul M.J., Lesnic D., Hussein M.S., “Reconstruction of time-dependent coefficients from heat moments”, Appl. Math. Comput., 301 (2017), 233–253 | MR | Zbl
[17] Hussein M.S., Lesnic D., “Simultaneous determination of time and space dependent coefficients in a parabolic equation”, Commun. Nonlinear Sci. Numer. Sim., 33 (2016), 194–217 | DOI | MR | Zbl
[18] Ivanchov M.I., Saldina N.V., “Inverse problem for a parabolic equation with strong power degeneration”, Ukr. Math. J., 58:11 (2006), 1685–1703 | DOI | MR | Zbl
[19] Durdiev D.K., Nuriddinov J.Z., “On investigation of the inverse problem for a parabolic integro-differential equation with a variable coefficient of thermal conductivity”, Vestn. Udmurtsk. un-ta. Matem. Mekhan. Kompyut. nauki, 30:4 (2020), 572–584 | MR | Zbl
[20] Durdiev D.K., Zhumaev Zh.Zh., “Problem of determining the thermal memory of a conducting medium”, Diff. Equat., 56:6 (2020), 785–796 | DOI | MR | Zbl
[21] Durdiev D.K., Zhumaev Zh.Zh., “Problem of determining a multidimensional thermal memory in a heat conductivity equation”, Meth. Funct. Anal. Topology, 25:3 (2019), 219–226 | MR
[22] Durdiev D.K., Nuriddinov J.Z., “Determination of a multidimensional kernel in some parabolic integro-differential equation”, Zhurn. SFU. Ser. Matem. fiz., 14:1 (2021), 117–127 | MR
[23] Durdiev D.K., Rashidov A.Sh., “Inverse problem of determining the kernel in an integro-differential equation of parabolic type”, Diff. Equat., 1:1 (2014), 110–116 | DOI | MR | Zbl
[24] Romanov V.G., “An inverse problem for an equation of parabolic type”, Math. Notes, 19:4 (1976), 360–363 | DOI | MR | Zbl