Uniqueness of the kernel determination problem in an integro-differential parabolic equation with variable coefficient
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2023), pp. 3-14

Voir la notice de l'article provenant de la source Math-Net.Ru

We investigate the inverse problem of determining the time and space dependent kernel of the integral term in the $n$-dimensional integro-differential equation of heat conduction from the known solution of the Cauchy problem for this equation. First, the original problem is replaced by the equivalent problem where an additional condition contains the unknown kernel without integral. We study the question of the uniqueness of the determining of this kernel. Next, assuming that there are two solutions $k_1(x,t)$ and $k_2(x,t)$ of the stated problem, it is formed an equation for the difference of this solution. Further research is being conducted for the difference $k_1(x,t)-k_2(x,t)$ of solutions of the problem and using the techniques of integral equations estimates. It is shown that if the unknown kernel $k(x,t)$ can be represented as $k(x,t)=\displaystyle\sum\limits_{i=0}^Na_i(x)b_i(t)$, then $k_1(x,t)\equiv k_2(x,t)$. Thus, the theorem on the uniqueness of the solution of the problem is proved.
Keywords: inverse problem, Cauchy problem, integral equation, uniqueness.
Mots-clés : parabolic equation
@article{IVM_2023_11_a0,
     author = {D. K. Durdiev and J. Z. Nuriddinov},
     title = {Uniqueness of the kernel determination problem in an integro-differential parabolic equation with variable coefficient},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {3--14},
     publisher = {mathdoc},
     number = {11},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2023_11_a0/}
}
TY  - JOUR
AU  - D. K. Durdiev
AU  - J. Z. Nuriddinov
TI  - Uniqueness of the kernel determination problem in an integro-differential parabolic equation with variable coefficient
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2023
SP  - 3
EP  - 14
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2023_11_a0/
LA  - ru
ID  - IVM_2023_11_a0
ER  - 
%0 Journal Article
%A D. K. Durdiev
%A J. Z. Nuriddinov
%T Uniqueness of the kernel determination problem in an integro-differential parabolic equation with variable coefficient
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2023
%P 3-14
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2023_11_a0/
%G ru
%F IVM_2023_11_a0
D. K. Durdiev; J. Z. Nuriddinov. Uniqueness of the kernel determination problem in an integro-differential parabolic equation with variable coefficient. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2023), pp. 3-14. http://geodesic.mathdoc.fr/item/IVM_2023_11_a0/