On conformally Killing vector fields on a 2-symmetric indecomposable Lorentzian manifold
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2023), pp. 83-89.

Voir la notice de l'article provenant de la source Math-Net.Ru

A natural generalization of Killing vector fields are conformally Killing vector fields which play an important role in the study of the group of conformal transformations of manifolds, Ricci flows on manifolds, and the theory of Ricci solitons. In this paper, we study conformally Killing vector fields on 2-symmetric indecomposable Lorentzian manifolds. It is established that the conformal factor of the conformal analogue of the Killing equation on them depends on the behavior of the Weyl tensor. In addition, in the case when the Weyl tensor is equal to zero, non-trivial examples of conformally Killing vector fields with a variable conformal factor are constructed using the Airy functions.
Keywords: conformally Killing vector fields, Lorentzian manifolds, $k$-symmetric spaces, Killing vector fields
Mots-clés : Ricci solitons.
@article{IVM_2023_10_a7,
     author = {M. E. Gnedko and D. N. Oskorbin and E. D. Rodionov},
     title = {On conformally {Killing} vector fields on a 2-symmetric indecomposable {Lorentzian} manifold},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {83--89},
     publisher = {mathdoc},
     number = {10},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2023_10_a7/}
}
TY  - JOUR
AU  - M. E. Gnedko
AU  - D. N. Oskorbin
AU  - E. D. Rodionov
TI  - On conformally Killing vector fields on a 2-symmetric indecomposable Lorentzian manifold
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2023
SP  - 83
EP  - 89
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2023_10_a7/
LA  - ru
ID  - IVM_2023_10_a7
ER  - 
%0 Journal Article
%A M. E. Gnedko
%A D. N. Oskorbin
%A E. D. Rodionov
%T On conformally Killing vector fields on a 2-symmetric indecomposable Lorentzian manifold
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2023
%P 83-89
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2023_10_a7/
%G ru
%F IVM_2023_10_a7
M. E. Gnedko; D. N. Oskorbin; E. D. Rodionov. On conformally Killing vector fields on a 2-symmetric indecomposable Lorentzian manifold. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2023), pp. 83-89. http://geodesic.mathdoc.fr/item/IVM_2023_10_a7/

[1] Cahen M., Wallach N., “Lorentzian symmetric spaces”, Bull. Amer. Math. Soc., 76:3 (1970), 585–591 | DOI | MR | Zbl

[2] Alexeevskii D.V., Galaev A.S., “Two-symmetric Lorentzian manifolds”, J. Geometry and Phys., 61:12 (2011), 2331–2340 | DOI | MR

[3] Sanchez M., Blanco O.F., Senovilla J.M.M., “Structure of second-order symmetric Lorentzian manifold”, J. Europ. Math. Soc., 15:2 (2013), 595–634 | DOI | MR | Zbl

[4] Galaev A.S., Leistner T., “Holonomy groups of Lorentzian manifolds: classification, examples, and applications”, Europ. Math. Soc. Publ. House, 2008, 53–96 | MR | Zbl

[5] Oskorbin D.N., Rodionov E.D., “Solitony Richchi i polya Killinga na obobschennykh mnogoobraziyakh Kakhena–Uollakha”, Sib. matem. zhurn., 60:5 (2019), 1165–1170 | MR | Zbl

[6] Walker A.G., “On parallel fields of partially null vector spaces”, The Quarterly J. Math., 20:1 (1949), 135–145 | DOI | MR | Zbl

[7] Brozos-Vázquez M., Garcia-Rio E., Gilkey P., Nikčević S., Vázquez-Lorenzo R., The Geometry of Walker Manifolds, Synthesis Lectures on Mathematics and Statistics, Morgan Claypool Publ., California, 2009 | DOI | MR | Zbl

[8] Wu H., “On the de Rham decomposition theorem”, Illinois J. Math., 8:2 (1964), 291–311 | MR | Zbl

[9] Hall G.S., “Conformal symmetries and fixed points in space-time”, J. Math. Phys., 31:5 (1990), 1198–1207 | DOI | MR | Zbl

[10] Blau M., O'Loughlin M., “Homogeneous plane waves”, Nuclear Physics, 654:1–2 (2003), 135–176 | DOI | MR | Zbl

[11] Fedoryuk M. V., Matematicheskaya entsiklopediya, 5-e izd., Sovetsk. entsiklopediya, 1985