Integral estimates of solutions to boundary values problems for the Poisson equation
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2023), pp. 70-76 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider solutions to two boundary values problems for the Poisson equation on plane domains. We prove several estimates for integrals of solutions using geometric characteristics of domains.
Mots-clés : Poisson equation
Keywords: Dirichlet problem, boundary values problem, isoperimetric inequality.
@article{IVM_2023_10_a5,
     author = {F. G. Avkhadiev and A. R. Kacimov},
     title = {Integral estimates of solutions to boundary values problems for the {Poisson} equation},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {70--76},
     year = {2023},
     number = {10},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2023_10_a5/}
}
TY  - JOUR
AU  - F. G. Avkhadiev
AU  - A. R. Kacimov
TI  - Integral estimates of solutions to boundary values problems for the Poisson equation
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2023
SP  - 70
EP  - 76
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/IVM_2023_10_a5/
LA  - ru
ID  - IVM_2023_10_a5
ER  - 
%0 Journal Article
%A F. G. Avkhadiev
%A A. R. Kacimov
%T Integral estimates of solutions to boundary values problems for the Poisson equation
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2023
%P 70-76
%N 10
%U http://geodesic.mathdoc.fr/item/IVM_2023_10_a5/
%G ru
%F IVM_2023_10_a5
F. G. Avkhadiev; A. R. Kacimov. Integral estimates of solutions to boundary values problems for the Poisson equation. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2023), pp. 70-76. http://geodesic.mathdoc.fr/item/IVM_2023_10_a5/

[1] Strack O.D., “Three-Dimensional Streamlines in Dupuit-Forchheimer Models”, Water Resources Research, 20:7 (1984), 812–922 | DOI

[2] Strack O.D., Analytical Groundwater Mechanics, Cambridge Univ. Press, Cambridge, 2017 | MR

[3] Blunt M.J, Multiphase Flow in Permeable Media$:$ A Pore-Scale Perspective, Cambridge Univ. Press, Cambridge, 2017

[4] Shah R.K., London A.L., Laminar Flow Forced Convection in Ducts: a Source Book for Compact Heat Exchanger Analytical Data, Academic Press, New York, 1978

[5] Timoshenko S.P., History of Strength of Materials, McGraw-Hill, London, 1954 | Zbl

[6] Pólya G., Szegö G., Isoperimetric Inequalities in Mathematical Physics, Princeton Univ. Press, Princeton, 1951 | MR

[7] Bandle C., Isoperimetric Inequalities and Applications, Pitman Monographs and Studies in Math., 7, Boston, 1980 | MR | Zbl

[8] Avkhadiev F.G., Kacimov A.R., “Analytical Solutions and Estimates for Microlevel Flows”, J. Porous Media, 8:2 (2005), 125–148 | DOI

[9] Kacimov A.R., Obnosov Yu. V., “Profiling ponded soil surface in saturated seepage into drain-line sink: Kalashnikov's method of lateral leaching revisited”, European J. Appl. Math., 34:2 (2022), 367–384 | DOI | MR

[10] Avkhadiev F.G., Kacimov A.R., “The Saint-Venant type isoperimetric inequalities for assessing saturated water storage in lacunary shallow perched aquifers”, ZAMM, 103:1 (2023), 1–22 | DOI | MR

[11] Zaremba S., “Ob odnoi smeshannoi zadache, otnosyascheisya k uravneniyu Laplasa”, UMN, 1:3–4 (1946), 125–146 | Zbl

[12] Bitsadze A.V., Kraevye zadachi dlya ellipticheskikh uravnenii vtorogo poryadka, Nauka, M., 1966 | MR

[13] Avkhadiev F.G., “Reshenie obobschennoi zadachi Sen-Venana”, Matem. sb., 189:12 (1998), 3–12 | DOI | Zbl

[14] Bañuelos R., van den Berg M., Carroll T., “Torsional Rigidity and Expected Lifetime of Brownian Motion”, J. London Math. Soc., 66:2 (2002), 499–512 | DOI | MR

[15] Avkhadiev F. G., Salahudinov R. G., “Isoperimetric inequalities for conformal moments of plane domains”, J. Inequal. Appl., 7:4 (2002), 593–601 | MR | Zbl

[16] Avkhadiev F. G., Kayumov I. R., “Comparison theorems of isoperimetric type for moments of compact sets”, Collectanea Math., 55:1 (2004), 1–9 | MR | Zbl

[17] Avkhadiev F.G., “Novye izoperimetricheskie neravenstva dlya momentov oblastei i zhestkosti krucheniya”, Izv. vuzov. Matem., 2004, no. 7, 3–11 | Zbl

[18] Avkhadiev F.G., “Izoperimetricheskoe neravenstvo dlya zhestkosti krucheniya v mnogomernykh oblastyakh”, Izv. vuzov. Matem., 2012, no. 7, 45–49 | Zbl

[19] Avkhadiev F.G., “Teoremy vlozheniya, svyazannye s zhestkostyu krucheniya i osnovnoi chastotoi”, Izv. RAN. Ser. matem., 86:1 (2022), 3–35 | DOI | MR | Zbl

[20] Apushkinskaya D.E., Nazarov A.I., “Lemma o normalnoi proizvodnoi i vokrug nee”, UMN, 77:2 (2022), 3–68 | DOI | MR | Zbl