On the solvability of a nonlocal problem for a Boussinesq-type differential equation
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2023), pp. 60-69.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study a nonlocal problem for a differential Boussinesq-type equations in a multidimensional domain. Conditions for the existence and uniqueness of the solution are established, and a spectral decomposition of the solution is obtained.
Keywords: nonlocal problem
Mots-clés : spectral decomposition, Boussinesq type equations.
@article{IVM_2023_10_a4,
     author = {A. R. Khalmukhamedov and E. I. Kuchkorov},
     title = {On the solvability of a nonlocal problem for a {Boussinesq-type} differential equation},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {60--69},
     publisher = {mathdoc},
     number = {10},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2023_10_a4/}
}
TY  - JOUR
AU  - A. R. Khalmukhamedov
AU  - E. I. Kuchkorov
TI  - On the solvability of a nonlocal problem for a Boussinesq-type differential equation
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2023
SP  - 60
EP  - 69
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2023_10_a4/
LA  - ru
ID  - IVM_2023_10_a4
ER  - 
%0 Journal Article
%A A. R. Khalmukhamedov
%A E. I. Kuchkorov
%T On the solvability of a nonlocal problem for a Boussinesq-type differential equation
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2023
%P 60-69
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2023_10_a4/
%G ru
%F IVM_2023_10_a4
A. R. Khalmukhamedov; E. I. Kuchkorov. On the solvability of a nonlocal problem for a Boussinesq-type differential equation. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2023), pp. 60-69. http://geodesic.mathdoc.fr/item/IVM_2023_10_a4/

[1] Boussinesq J., “Théorie des ondes et des remous qui se propagent le long d'un canal rectangulaire horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond”, J. Math. Pures Appl., Deux. Ser., 17 (1872), 55–108 | MR

[2] Sveshnikov A.G., Alshin A.B., Korpusov M.O., Pletner Yu.D., Lineinye i nelineinye uravneniya sobolevskogo tipa, Fizmatlit, M., 2007

[3] Yuldashev T.K., “Ob odnoi nelokalnoi zadache dlya neodnorodnogo integro-differentsialnogo uravnenie tipa Bussineska s vyrozhdennym yadrom”, Uchen. zap. Kazan. un-ta, Ser. Fiz.-matem. nauki, 159, no. 1, 2017, 88–99

[4] Ashurov R., Fayziev Yu., “On the Nonlocal Problems in Time for Time-Fractional Subdiffusion Equations”, Fractal and Fract., 6:41 (2022), 2–21 | MR

[5] Ashurov R., Fayziev Yu., “On some boundary value problems for equations with boundary operators of fractional order”, Inter. J. Appl. Math., 34:2 (2021), 283–295 | DOI | MR

[6] Yuldashev T.K., “Smeshannoe differentsialnoe uravnenie tipa Bussineska”, Vestn. Volgogr. gos. un-ta, Ser. 1, Matem. Fiz., 2:33 (2016), 13–26

[7] Alimov Sh.A., Khalmukhamedov A.R., “On a non-local problem for a Boussinesq type differential equation”, Lobachevskii J. Math., 43:4 (2022), 916–923 | DOI | MR | Zbl

[8] Berezanskii Yu.M., Razlozhenie po sobstvennym funktsiyam samosopryazhennykh operatorov, Naukova dumka, Kiev, 1965

[9] Alimov Sh.A., “On the smoothness of mean values of functions with summable spectral expansion”, Diff. Equat., 48:4 (2012), 506–516 | DOI | MR | Zbl

[10] Khalmukhamedov A.R., “Complex powers of the Schrödinger operator with singular potential”, Contemporary Math., 672, 2016, 205–215 | DOI | MR | Zbl

[11] Khalmukhamedov A.R., “Teorema o srednem dlya odnogo ellipticheskogo uravneniya”, Diff. uravneniya, 19:9 (1983), 1601–1609 | MR | Zbl