Non-negative matrices and their structured singular values
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2023), pp. 36-45
Voir la notice de l'article provenant de la source Math-Net.Ru
In this article, we present new results for the computation of structured singular values of non-negative matrices subject to pure complex perturbations. We prove the equivalence of structured singular values and spectral radius of perturbed matrix $(M\triangle)$. The presented new results on the equivalence of structured singular values, non-negative spectral radius and non-negative determinant of $(M\triangle)$ is presented and analyzed. Furthermore, it has been shown that for a unit spectral radius of $(M\triangle)$, both structured singular values and spectral radius are exactly equal. Finally, we present the exact equivalence between structured singular value and the largest singular value of $(M\triangle)$.
Keywords:
$\mu$-values, singular values, eigen values, structured matrices.
@article{IVM_2023_10_a2,
author = {M. Rehman and T. Rasulov and B. Aminov},
title = {Non-negative matrices and their structured singular values},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {36--45},
publisher = {mathdoc},
number = {10},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2023_10_a2/}
}
TY - JOUR AU - M. Rehman AU - T. Rasulov AU - B. Aminov TI - Non-negative matrices and their structured singular values JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2023 SP - 36 EP - 45 IS - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2023_10_a2/ LA - ru ID - IVM_2023_10_a2 ER -
M. Rehman; T. Rasulov; B. Aminov. Non-negative matrices and their structured singular values. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2023), pp. 36-45. http://geodesic.mathdoc.fr/item/IVM_2023_10_a2/