Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2023_10_a2, author = {M. Rehman and T. Rasulov and B. Aminov}, title = {Non-negative matrices and their structured singular values}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {36--45}, publisher = {mathdoc}, number = {10}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2023_10_a2/} }
TY - JOUR AU - M. Rehman AU - T. Rasulov AU - B. Aminov TI - Non-negative matrices and their structured singular values JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2023 SP - 36 EP - 45 IS - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2023_10_a2/ LA - ru ID - IVM_2023_10_a2 ER -
M. Rehman; T. Rasulov; B. Aminov. Non-negative matrices and their structured singular values. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2023), pp. 36-45. http://geodesic.mathdoc.fr/item/IVM_2023_10_a2/
[1] Doyle J., “Analysis of feedback systems with structured uncertainties”, IEE Proceedings on Control Theory and Applications, 129:6 (1982), 242–250 | DOI | MR
[2] Braatz R.P., Young P.M., Doyle J.C., Morari M., “Computational complexity of $\mu$-calculation”, IEEE Trans. Autom. Control, 39:5 (1994), 1000–1002 | DOI | MR | Zbl
[3] Fan M., Tits A., “Characterization and efficient computation of the structured singular value”, IEEE Trans. Autom. Control, 31:8 (1986), 734–743 | DOI | Zbl
[4] Helton J.W., “A numerical method for computing the structured singular value”, Control Systems control letters, 10 (1988), 21–26 | DOI | MR | Zbl
[5] Young P.M., Newlin M.P., Doyle J.C. et al, “Practical computation of the mixed $\mu$ problem”, American Control Conference, IEEE, 1992, 2190–2194
[6] Young P.M., “The rank one mixed $\mu$ problem and Kharitonov-type analysis”, Automatica, 30:12 (1994), 1899–1911 | DOI | MR | Zbl
[7] Rehman M., Alzabut J., Ateeq T., Kongson J., Sudsutad W., “The Dual Characterization of Structured and Skewed Structured Singular Values”, Math., 10:12 (2022), 2050 | DOI
[8] Guglielmi N., Rehman M., Kressner D., “A Novel Iterative Method to Approximate Structured Singular Values”, SIAM J. Matrix Anal. and Appl., 38:2 (2017), 361–386 | DOI | MR | Zbl
[9] Packard A., Doyle J., “The complex structured singular value”, Automatica, 29:1 (1993), 71–109 | DOI | MR | Zbl
[10] Troeng O., “Five-Full-Block Structured Singular Values of Real Matrices Equal Their Upper Bounds”, IEEE Control Systems Letters, 5:2 (2020), 583–586 | DOI | MR
[11] Rehman M., Tayyab M., Anwar M.F., “Computing $\mu$-Values for Real and Mixed $\mu$ Problems”, Math., 7:9 (2019), 821 | DOI
[12] Berman A., Plemmons R.J., Nonnegative Matrices in the Mathematical Sciences, Classics Appl. Math., SIAM, 1994 | MR | Zbl
[13] Bo Z., “Bounds for the spectral radius of nonnegative matrices”, Math. Slovaca, 51:2 (2001), 179–183 | MR | Zbl
[14] Schur I., Remarks on the theory of bounded bilinear forms with infinitely many variables, Walter de Gruyter, New York, 1911
[15] Nikiforov V., Revisiting Schur's bound on the largest singular value, 2007, arXiv: math/0702722