The Dirichlet Problem for a mixed-type equation with fractional derivatives
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2022), pp. 83-94.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we study the first boundary value problem for equation of mixed type with fractional derivatives in a rectangular domain. The criterion for the uniqueness of the solution of the problem is established. The solution is constructed as a sum of an orthogonal series and its convergence is shown in the class of regular solutions of this equations. The stability of the solution with respect to given boundary functions is established in the class of continuous and square-summable functions.
Keywords: the mixed-type equation with fractional derivatives, the Dirichlet problem, criterion of uniqueness, series, stability.
Mots-clés : existence
@article{IVM_2022_9_a7,
     author = {K. B. Sabitov},
     title = {The {Dirichlet} {Problem} for a mixed-type equation with fractional derivatives},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {83--94},
     publisher = {mathdoc},
     number = {9},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2022_9_a7/}
}
TY  - JOUR
AU  - K. B. Sabitov
TI  - The Dirichlet Problem for a mixed-type equation with fractional derivatives
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2022
SP  - 83
EP  - 94
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2022_9_a7/
LA  - ru
ID  - IVM_2022_9_a7
ER  - 
%0 Journal Article
%A K. B. Sabitov
%T The Dirichlet Problem for a mixed-type equation with fractional derivatives
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2022
%P 83-94
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2022_9_a7/
%G ru
%F IVM_2022_9_a7
K. B. Sabitov. The Dirichlet Problem for a mixed-type equation with fractional derivatives. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2022), pp. 83-94. http://geodesic.mathdoc.fr/item/IVM_2022_9_a7/

[1] Samko S.G., Kilbas A.A., Marichev O.I., Integraly i proizvodnye drobnogo poryadka i nekotorye ikh prilozheniya, Minsk, Nauka i Tekhnika, 1987

[2] Nakhushev A.M., Elementy drobnogo ischisleniya i ikh primenenie, Izd-vo KBNTs RAN, Nalchik, 2000

[3] Pskhu A.V., Uravneniya v chastnykh proizvodnykh drobnogo poryadka, Nauka, M., 2005

[4] Gekkieva S.Kh., “Ob odnom analoge zadachi Trikomi dlya uravneniya smeshannogo tipa s drobnoi proizvodnoi”, Dokl. AMAN, 5:2 (2001), 18–22

[5] Gekkieva S.Kh., “Analog zadachi Trikomi dlya uravneniya smeshannogo tipa s drobnoi proizvodnoi”, Izv. KBNTs RAN, 2:7 (2001), 78–80

[6] Kilbas A.A., Repin O.A., “Analog zadachi Bitsadze–Samarskogo dlya uravneniya smeshannogo tipa s drobnoi proizvodnoi”, Differents. uravneniya, 39:5 (2003), 638–644 | MR | Zbl

[7] Kilbas A.A., Repin O.A., “Analog zadachi Trikomi dlya differentsialnogo uravneniya s chastnymi proizvodnymi, soderzhaschego uravnenie diffuzii drobnogo poryadka”, Dokl. AMAN, 12:1 (2010), 31–39 | MR

[8] Masaeva O.Kh., “Zadacha Dirikhle dlya fraktalnogo uravneniya Laplasa v pryamougolnoi oblasti”, Dokl. AMAN, 10:2 (2008), 26–29

[9] Mamchuev M.O., Kraevye zadachi dlya uravnenii i sistem uravnenii s chastnymi proizvodnymi drobnogo poryadka, Izd-vo KBNTs RAN, Nalchik, 2013

[10] Masaeva O.Kh., “Zadacha Dirikhle dlya obobschennogo uravneniya Laplasa s proizvodnoi Kaputo”, Differents. uravneniya, 48:3 (2012), 442–446 | MR | Zbl

[11] Masaeva O.Kh., “Zadacha Dirikhle dlya nelokalnogo volnovogo uravneniya”, Differents. uravneniya, 49:12 (2013), 1566–1571 | MR | Zbl

[12] Masaeva O.Kh., “Uniqueness of solutions to Dirichlet problems for generalized Lavrent'ev–Bitsadze equations with a fractional derivative”, Electron J. Diff. Equat., 74 (2017), 1–8 | MR

[13] Masaeva O.Kh., “Existence of solution to Dirichlet problem for generalized Lavrent'ev–Bitsadze equation with a fractional derivative”, Progress in fractional Diff. and Appl., 6:3 (2020), 239–244 | DOI | MR

[14] Salakhitdinov M.S., Karimov E.T., “Uniqueness of inverse source-local problem for fractional order mixed type equation”, Eurasian Math. J., 7:1 (2016), 74–83 | MR | Zbl

[15] Ashurov R.R., Zunnunov R.T., “Inverse Problem for Determining the Order of the Fractional Derivative in Mixed-Type Equations”, Lobachevskii J. Math., 42:12 (2021), 2714–2729 | DOI | MR | Zbl

[16] Sabitov K.B., “Zadacha Dirikhle dlya uravneniya smeshannogo tipa v pryamougolnoi oblasti”, Dokl. RAN, 413:1 (2007), 23–26 | Zbl

[17] Sabitov K.B., Safina R.M., “Pervaya granichnaya zadacha dlya uravneniya smeshannogo tipa s singulyarnym koeffitsientom”, Izv. RAN, Ser. matem., 82:2 (2018), 79–112 | MR | Zbl

[18] Dzhrbashyan M.M., Integralnye preobrazovaniya i predstavleniya funktsii v kompleksnoi oblasti, Nauka, M., 1966 | MR

[19] Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii, v. 3, Nauka, M., 1967