A problem with displacement on internal characteristics in an unbounded domain for the Gellerstedt equation with a singular coefficient
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2022), pp. 70-82.

Voir la notice de l'article provenant de la source Math-Net.Ru

In an unbounded domain, for the Gellerstedt equation with a singular coefficient, uniqueness and existence theorems for the solution of a problem with displacement condition on the internal characteristics and a condition like the Frankl condition on the degeneration segment of the equation are proved.
Keywords: unbounded domain, displacement conditions on internal characteristics, Tricomi singular integral equation with displacement in the "nonsingular", part of the kernel, non-Fredholm operator in the non-characteristic part of the equation, Wiener-Hopf equation, index.
Mots-clés : residue
@article{IVM_2022_9_a6,
     author = {U. M. Mirsaburova},
     title = {A problem with displacement on internal characteristics in an unbounded domain for the {Gellerstedt} equation with a singular coefficient},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {70--82},
     publisher = {mathdoc},
     number = {9},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2022_9_a6/}
}
TY  - JOUR
AU  - U. M. Mirsaburova
TI  - A problem with displacement on internal characteristics in an unbounded domain for the Gellerstedt equation with a singular coefficient
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2022
SP  - 70
EP  - 82
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2022_9_a6/
LA  - ru
ID  - IVM_2022_9_a6
ER  - 
%0 Journal Article
%A U. M. Mirsaburova
%T A problem with displacement on internal characteristics in an unbounded domain for the Gellerstedt equation with a singular coefficient
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2022
%P 70-82
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2022_9_a6/
%G ru
%F IVM_2022_9_a6
U. M. Mirsaburova. A problem with displacement on internal characteristics in an unbounded domain for the Gellerstedt equation with a singular coefficient. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2022), pp. 70-82. http://geodesic.mathdoc.fr/item/IVM_2022_9_a6/

[1] Bitsadze A.V., Nekotorye klassy uravnenii v chastnykh proizvodnykh, Nauka, M., 1981 | MR

[2] Zhegalov V.I., “Kraevaya zadacha dlya uravneniya smeshannogo tipa s granichnymi usloviyami na obeikh kharakteristikakh i s razryvami na perekhodnoi linii”, Uchen. zap. Kazansk. un-ta, 122, no. 3, 1962, 3–16 | Zbl

[3] Nakhushev A.M., “O nekotorykh kraevykh zadachakh dlya giperbolicheskikh uravnenii i uravnenii smeshannogo tipa”, Differents. uravneniya, 5:1 (1969), 44–59 | Zbl

[4] Ruziev M.Kh., “Zadacha so smescheniyami vo vnutrennikh kharakteristikakh dlya uravnenii smeshannogo elliptiko-giperbolicheskogo tipa s singulyarnym koeffitsientom”, Differents. uravneniya, 49:8 (2013), 1016–1025 | Zbl

[5] Mirsaburova Gulbakhor M., “Kombinirovannaya zadacha s usloviem Trikomi i usloviem smescheniya na vnutrennikh kharakteristikakh dlya uravneniya Gellerstedta s singulyarnym koeffitsientom”, Differents. uravneniya, 51:5 (2015), 621–634 | MR | Zbl

[6] Smirnov M.M., Uravneniya smeshannogo tipa, Vyssh. shk., M., 1985 | MR

[7] Frankl F.I., “Obtekanie profilei gazom s mestnoi sverkhzvukovoi zonoi, okanchivayuscheisya pryamym skachkom uplotneniya”, Prikl. matem. i mekhan., 20:2 (1956), 196–202 | Zbl

[8] Salakhitdinov M.S., Mirsaburov M., Nelokalnye zadachi dlya uravnenii smeshannogo tipa s singulyarnymi koeffitsientami, Universitet, Tashkent, 2005

[9] Mirsaburov M., Ruziev M.X., Amonov B.B., “On fundamental solutions of degenerate elliptic type equation with sungular coefficients and their properties”, Bull. Inst. Math., 2018, no. 3, 29–49

[10] Polosin A.A., “Ob odnoznachnoi razreshimost zadachi Trikomi dlya spetsialnoi oblasti”, Differents. uravneniya, 32:3 (1996), 394–401 | MR | Zbl

[11] Mirsaburov M., “Kraevaya zadacha dlya odnogo klassa uravnenii smeshannogo tipa s usloviem Bitsadze–Samarskogo na parallelnykh kharakteristikakh”, Differents. uravneniya, 37:9 (2001), 1281–1284 | MR | Zbl

[12] Gakhov F.D., Cherskii Yu.I., Uravneniya tipa svertki, Nauka, M., 1978 | MR