Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2022_9_a5, author = {A. A. Makhnev and Wenbin Guo and K. S. Efimov}, title = {The {Koolen-Park} bound and distance-regular graphs without $m$-clavs}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {64--69}, publisher = {mathdoc}, number = {9}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2022_9_a5/} }
TY - JOUR AU - A. A. Makhnev AU - Wenbin Guo AU - K. S. Efimov TI - The Koolen-Park bound and distance-regular graphs without $m$-clavs JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2022 SP - 64 EP - 69 IS - 9 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2022_9_a5/ LA - ru ID - IVM_2022_9_a5 ER -
A. A. Makhnev; Wenbin Guo; K. S. Efimov. The Koolen-Park bound and distance-regular graphs without $m$-clavs. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2022), pp. 64-69. http://geodesic.mathdoc.fr/item/IVM_2022_9_a5/
[1] Brouwer A.E., Cohen A.M., Neumaier A., Distance-Regular Graphs, Springer-Verlag, Berlin-Heidelberg-New York, 1989 | MR | Zbl
[2] Koolen J.H., Park J., “Shilla distance-regular graphs”, Europ. J. Comb., 31:8 (2010), 2064–2073 | DOI | MR | Zbl
[3] Gavrilyuk A.L., Makhnev A.A., “Distance-regular graph with the intersection array $\{45,30,7;1,2,27\}$ does not exist”, Discr. Math. Appl., 23:3–4 (2013), 225–244 | MR | Zbl
[4] Gavrilyuk A.L., “Distance-regular graphs with the intersection arrays $\{55,36,11;1,4,45\}$ and $\{56,36,9;1,3,48\}$ do not exist”, Dokl. Math., 84:1 (2011), 444–446 | DOI | MR | Zbl
[5] Gavrilyuk A.L., Makhnev A.A., “Distance-regular graphs with intersection arrays $\{52,35,16;1,4,28\}$ and $\{69,48,24;1,4,46\}$ do not exist”, Designs Codes and Cryptography, 65:1–2 (2012), 49–54 | DOI | MR | Zbl
[6] Bang S., “Geometric distance-regular graphs without $4$-claws”, Linear Algebra Appl., 438:1 (2013), 37–46 | DOI | MR | Zbl