A boundary value problem with a conormal derivative for the mixed type equation of second kind with a conjugation condition of the Frankl type
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2022), pp. 14-29.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, using the properties of generalized solutions, both in the hyperbolic part and in the elliptic part of the mixed domain, we study a boundary value problem with a conormal derivative for a mixed type equation of the second kind with Frankl type conditions is investigated. The uniqueness of the solution to the problem under study is proved using the extremum principle, and the existence is proved by the method of integral equations. The theory of singular integral equations, Wiener-Hopf and Fredholm integral equations of the second kind are used to prove the existence of a solution to the problem.
Keywords: equation of the second kind, extremum principle, Wiener-Hopf equation, Green's function, uniqueness and existence of a solution.
Mots-clés : convolution-type equation
@article{IVM_2022_9_a1,
     author = {B. I. Islomov and A. A. Abdullayev},
     title = {A boundary value problem with a conormal derivative for the mixed type equation of second kind with a conjugation condition of the {Frankl} type},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {14--29},
     publisher = {mathdoc},
     number = {9},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2022_9_a1/}
}
TY  - JOUR
AU  - B. I. Islomov
AU  - A. A. Abdullayev
TI  - A boundary value problem with a conormal derivative for the mixed type equation of second kind with a conjugation condition of the Frankl type
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2022
SP  - 14
EP  - 29
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2022_9_a1/
LA  - ru
ID  - IVM_2022_9_a1
ER  - 
%0 Journal Article
%A B. I. Islomov
%A A. A. Abdullayev
%T A boundary value problem with a conormal derivative for the mixed type equation of second kind with a conjugation condition of the Frankl type
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2022
%P 14-29
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2022_9_a1/
%G ru
%F IVM_2022_9_a1
B. I. Islomov; A. A. Abdullayev. A boundary value problem with a conormal derivative for the mixed type equation of second kind with a conjugation condition of the Frankl type. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2022), pp. 14-29. http://geodesic.mathdoc.fr/item/IVM_2022_9_a1/

[1] Bitsadze A.V., Izbrannye trudy, Izd-vo KBNTsRAN, Rossiya, 2012

[2] Frankl F.I., “O zadachakh S.A. Chaplygina dlya smeshannykh do-i sverkhzvukovykh techenii”, Izv. AN SSSR, Ser. matem., 9:2 (1945), 121–143 | Zbl

[3] Frankl F.I., Izbrannye trudy po gazovoi dinamike, Nauka, M., 1973 | MR

[4] Salakhitdinov M.S., Islomov B.I., Uravneniya smeshannogo tipa s dvumya liniyami vyrozhdeniya, Mumtoz suz, Tashkent, 2010

[5] Salakhitdinov M.S., Amanov D., “Zadacha Puankare–Trikomi dlya uravneniya smeshannogo tipa s razryvnymi koeffitsientami”, Uravneniya smeshannogo tipa i zadachi so svobodnoi granitsei, 1987, 3–38 | MR

[6] Salakhitdinov M.S., Kadyrov Z., “Zadacha s normalnoi proizvodnoi dlya uravneniya smeshannogo tipa s negladkimi liniyami vyrozhdeniya”, Differents. uravneniya, 22:1 (1986), 103–114 | MR | Zbl

[7] Salakhitdinov M.S., Islomov B.I., “Nelokalnaya kraevaya zadacha s konormalnoi proizvodnoi dlya uravneniya smeshannogo tipa s dvumya vnutrennimi liniyami i razlichnymi poryadkami vyrozhdeniya”, Izv. vuzov. Matem., 2011, no. 1, 49–58 | Zbl

[8] Moiseev E.I., Moiseev T.E., Vafodorova G.O., “Ob integralnom predstavlenii zadachi Neimana–Trikomi dlya uravneniya Lavrenteva–Bitsadze”, Differents. uravneniya, 51:8 (2015), 1070–1075 | MR | Zbl

[9] Algazin O.D., Kopaev A.V., “K zadache o naklonnoi proizvodnoi dlya uravneniya Lavrenteva–Bitsadze v poluploskosti”, Matem. i matem. modelirovanie, 2 (2016), 1–8

[10] Smirnov M.M., Uravneniya smeshannogo tipa, Vyssh. shk., M., 1985 | MR

[11] Karol I.L. Ob odnoi kraevoi zadache dlya uravneniya smeshannogo elliptiko-giperbolicheskogo tipa, DAN SSSR, 88:2 (1953), 197–200 | MR | Zbl

[12] Mamadaliev N.K., “O predstavlenii resheniya vidoizmenennoi zadachi Koshi”, Sib. matem. zhurn., 41:5 (2000), 1087–1097 | MR | Zbl

[13] Isamukhamedov S.S., Oromov Zh., “O kraevykh zadachakh dlya uravneniya smeshannogo tipa vtorogo roda s negladkoi liniei vyrozhdeniya”, Differents. uravneniya, 18:2 (1982), 324–334 | MR | Zbl

[14] Khairullin R.S., Zadacha Trikomi dlya uravneniya vtorogo roda s silnym vyrozhdeniem, Izd-vo Kazansk. un-ta, Kazan, 2015

[15] Salakhitdinov M.S., Islamov N.B., “Nelokalnaya kraevaya zadacha s usloviem Bitsadze–Samarskogo dlya uravneniya parabolo-giperbolicheskogo tipa vtorogo roda”, Izv. vuzov. Matem., 2015, no. 6, 43–52 | Zbl

[16] Mirsaburov M., Islomov N.B., “Problem with a Bitsadze–Samarskii condition on parallel characteristics for a mixed type equation of the second kind”, Diff. Equat., 57:10 (2021), 1358–1371 | DOI | MR | Zbl

[17] Sabitov K.B., Egorova I.P., “O korrektnosti kraevykh zadach s usloviyami periodichnosti dlya uravneniya smeshannogo tipa vtorogo roda”, Vestn. Samarsk. gos. tekh. un-ta, Ser. Fiz.-matem. nauki, 23:3 (2019), 430–451 | Zbl

[18] Sabitov K.B., Suleimanova A.Kh., “Zadacha Dirikhle dlya uravneniya smeshannogo tipa s kharakteristicheskim vyrozhdeniem v pryamougolnoi oblasti”, Izv. vuzov. Matem., 2009, no. 11, 43–52 | Zbl

[19] Islomov B.I., Abdullayev A.A., “On a problem for an elliptic type equation of the second kind with a conormal and integral condition”, J. Nanosystems: Physics, Chemistry, Math., 9:3 (2018), 307–318 | DOI | MR

[20] Abdullaev A.A., Ergashev T.G., “Zadacha Puankare–Trikomi dlya uravneniya smeshannogo elliptiko-giperbolicheskogo tipa vtorogo roda”, Vestn. Tomsk. gos. un-ta, Matem. i Mekhan., 65 (2020), 5–21 | Zbl

[21] Yuldashev T.K., Islomov B.I., Abdullaev A.A., “On solvability of a Poincare–Tricomi type problem for an elliptic–hyperbolic equation of the second kind”, Lobachevskii J. Math., 42:3 (2021), 663-675 | DOI | MR | Zbl

[22] Babenko K.I., K teorii uravnenii smeshannogo tipa, UMN, M., 1953 | MR

[23] Smirnov M.M., Vyrozhdayuschiesya ellipticheskie i giperbolicheskie uravneniya, Nauka, M., 1966 | MR

[24] Bitsadze A.V., “O edinstvennosti resheniya zadachi Franklya dlya uravneniya Chaplygina”, DAN SSSR, 3:112 (1957), 375–376

[25] Devingtal Yu.V., “O suschestvovanii i edinstvennosti resheniya odnoi zadachi F.I. Franklya”, Izv. vuzov. Matem., 1958, no. 2, 39–51 | MR | Zbl

[26] Devingtal Yu.V., “K voprosu o suschestvovanii i edinstvennosti resheniya zadachi Franklya”, UMN, 14:1 (1959), 177–182 | MR | Zbl

[27] Kapustin N.Yu., Sabitov K.B., “O reshenii odnoi problemy v teorii zadachi Franklya dlya uravnenii smeshannogo tipa”, DAN SSSR, 317:5 (1991), 1048–1052 | Zbl

[28] Soldatov A.P., “Reshenie odnoi kraevoi zadachi teorii funktsii so smescheniem”, Differents. uravneniya, 10:1 (1974), 143–152 | Zbl

[29] Islomov B.I., Ochilova N.K., Sadarangani K.S., “On a Frankl-type boundary-value problem for a mixed-type degenerating equation”, Ukr. Math. J., 71:10 (2020), 1541–1554 | DOI | MR

[30] Sabitov K.B., “K teorii zadachi Franklya dlya uravnenii smeshannogo tipa”, Izv. RAN, Ser. Matem., 81:1 (2017), 101–138 | MR | Zbl

[31] Mirsaburov M., “Zadacha s analogami usloviya Franklya na kharakteristike i na otrezke vyrozhdeniya dlya uravneniya smeshannogo tipa s singulyarnym koeffitsientom”, Differents. uravneniya, 53:6 (2017), 778–788 | Zbl

[32] Mirsaburov M., Bobomurodov U.E., “Zadacha s usloviyami Franklya i Bitsadze–Samarskogo na linii vyrozhdeniya i na parallelnykh kharakteristikakh dlya uravneniya Gellerstedta s singulyarnym koeffitsientom”, Differents. uravneniya, 48:5 (2012), 730–737 | MR | Zbl

[33] Mirsaburov M., Chorieva S.T., “Zadacha s analogom usloviya Franklya na kharakteristike dlya uravneniya Gellerstedta s singulyarnym koeffitsientom”, Izv. vuzov. Matem., 2017, no. 11, 39–45 | Zbl

[34] Gradshtein I.S., Ryzhik I.M., Tablitsy integralov, summ, ryadov i proizvedenii, Vyssh. shk., M., 1963 | MR

[35] Salakhitdinov M.S., Mirsaburov M., Nelokalnye zadachi dlya uravneniya smeshannogo tipa s singulyarnymi koeffitsientami, Universitet, Tashkent, 2005

[36] Muskhelishvili N.I., Singulyarnye integralnye uravneniya, Nauka, M., 1968

[37] Samko S.G., Kilbas A.A., Marichev O.I., Integraly i proizvodnye drobnogo poryadka i nekotorye ikh prilozheniya, Nauka i tekhnika, Minsk, 1987

[38] Mikhlin S.G., Lektsii po lineinym integralnym uravneniyam, Fizmatgiz, M., 1959