On conditions for the absolute stability of one difference scheme for some multidimensional differential-algebraic systems
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2022), pp. 69-80.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper considers an initial-boundary value problem for a linear multidimensional differential-algebraic system of equations of the first order with variable matrix coefficients of a special form. For its numerical solution, the spline-collocation method was used. This method, in contrast to the splitting methods, allows one to take into account the structural features of all matrix coefficients of the system in aggregate and has a high accuracy, which coincides with the order of the multidimensional approximating spline. The paper contains a multidimensional spline-collocation difference scheme. A theorem on the stability of the difference scheme under certain conditions on the matrix coefficients of the system is proved. In conclusion, the results of numerical calculations for the test example are given.
Keywords: difference scheme, stability, multidimensional differential-algebraic system.
@article{IVM_2022_8_a6,
     author = {S. V. Svinina},
     title = {On conditions for the absolute stability of one difference scheme for some multidimensional differential-algebraic systems},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {69--80},
     publisher = {mathdoc},
     number = {8},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2022_8_a6/}
}
TY  - JOUR
AU  - S. V. Svinina
TI  - On conditions for the absolute stability of one difference scheme for some multidimensional differential-algebraic systems
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2022
SP  - 69
EP  - 80
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2022_8_a6/
LA  - ru
ID  - IVM_2022_8_a6
ER  - 
%0 Journal Article
%A S. V. Svinina
%T On conditions for the absolute stability of one difference scheme for some multidimensional differential-algebraic systems
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2022
%P 69-80
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2022_8_a6/
%G ru
%F IVM_2022_8_a6
S. V. Svinina. On conditions for the absolute stability of one difference scheme for some multidimensional differential-algebraic systems. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2022), pp. 69-80. http://geodesic.mathdoc.fr/item/IVM_2022_8_a6/

[1] Ruschinskii V. M., “Prostranstvennye lineinye i nelineinye modeli kotlogeneratorov”, Voprosy identifikatsii i modelirovaniya, 1968, 8–15

[2] Sobolev S. L., “Ob odnoi novoi zadache matematicheskoi fiziki”, Izv. AN SSSR. Ser. matem., 18:1 (1954), 3–50 | MR | Zbl

[3] Kutateladze S. S., Nakoryakov V. E., Teplomassoobmen i volny v gazozhidkostnykh sistemakh, Nauka, Novosibirsk, 1984

[4] Demidenko G. A., Uspenskii S. V., Uravneniya i sistemy ne razreshennye otnositelno starshei proizvodnoi, Nauchn. kn., Novosibirsk, 1998 | MR

[5] Soto Selva M., Tischendorf C., “Numerical analysis of DAEs from coupled circuit and semiconductor simulation”, Appl. Numer. Math., 53:2–4 (2005), 471–488 | DOI | MR | Zbl

[6] Lucht W., “Partial differential-algebraic systems of second order with symmetric convection”, Appl. Numer. Math., 53:2–4 (2005), 357–371 | DOI | MR | Zbl

[7] Yanenko N. N., “Ob ekonomichnykh neyavnykh skhemakh (metod drobnykh shagov)”, DAN SSSR, 134:5 (1960), 1034–1036 | Zbl

[8] Samarskii A. A., “Ekonomichnye raznostnye skhemy dlya giperbolicheskoi sistemy uravnenii so smeshannymi proizvodnymi i ikh primenenie dlya uravnenii teorii uprugosti”, Zh. vychisl. matem. i matem. fiz., 5:1 (1965), 34–43 | Zbl

[9] Kovenya V. M., Raznostnye metody resheniya mnogomernykh zadach: kurs lektsii, Novosib. gos. un-t, Novosibirsk, 2004

[10] Chistyakov V. F., Ta Zui Fyong, “K voprosu o kachestvennykh svoistvakh differentsialno-algebraicheskikh uravnenii”, Matem. zametki, 96:4 (2014), 596–608 | Zbl

[11] Chistyakov V. F., Chistyakova E. V., Diep N. Kh., “O ponyatii indeksa lineinykh differentsialno-algebra-icheskikh uravnenii v chastnykh proizvodnykh”, Sib. matem. zhurn., 61:5 (2020), 1144–1158 | MR | Zbl

[12] Chistyakov V. F., “O regulyarizatsii differentsialno-algebraicheskikh uravnenii”, Zh. vychisl. matem. i matem. fiz., 51:12 (2011), 2181–2193 | MR | Zbl

[13] Scheglova A. A., “Issledovanie i reshenie vyrozhdennykh sistem obyknovennykh differentsialnykh uravnenii s pomoschyu zamen peremennykh”, Sib. matem. zhurn., 36:6 (1995), 1435–1445 | MR

[14] Gaidomak S. V., “Ob ustoichivosti neyavnoi splain-kollokatsionnoi raznostnoi skhemy dlya lineinykh differentsialno-algebraicheskikh uravnenii s chastnymi proizvodnymi”, Zh. vychisl. matem. i matem. fiz., 53:9 (2013), 1460–1479 | MR | Zbl

[15] Svinina S. V., “Ob ustoichivosti splain-kollokatsionnoi raznostnoi skhemy dlya odnoi kvazilineinoi differentsialno-algebraicheskoi sistemy uravnenii v chastnykh proizvodnykh pervogo poryadka”, Zh. vychisl. matem. i matem. fiz., 58:11 (2018), 1844–1862 | MR | Zbl

[16] Gaidomak S. V., Chistyakov V. F., “O sistemakh ne tipa Koshi-Kovalevskoi indeksa $(1,k)$”, Vychisl. tekhnologii, 10:2 (2005), 45–59 | Zbl

[17] Gaidomak S. V., “O kanonicheskoi strukture puchka vyrozhdennykh matrits-funktsii”, Izv. vuzov. Matem., 2012, no. 2, 23–33 | MR | Zbl

[18] Lankaster P., Teoriya matrits, Per. s angl., 2-e izd., Nauka, M., 1982 | MR