A version of the Malliavin--Rubel Theorem on entire functions of exponential type with zeros near the imaginary axis
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2022), pp. 46-55.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathsf Z$ and $\mathsf W$ be two distributions of points on the complex plane $\mathbb C$. In the case of $\mathsf Z$ and $\mathsf W$, lying on the positive half-line $\mathbb R^+\subset \mathbb C$, the classic theorem Malliavin–Rubel 1960s, gives a necessary and sufficient correlation between $\mathsf Z$ and $\mathsf W$, when for each entire function $g\neq 0$ exponential type that vanish on $\mathsf W$, there exists a an entire function $f\neq 0$ exponential type that vanish on $\mathsf Z$, with the constraint $|f|\leq|g|$ on the imaginary axis $i\mathbb R$. In subsequent years, this theorem was extended to $\mathsf Z$ and $\mathsf W$ located outside of some pair of angles containing $i\mathbb R$ inside. Our version of Malliavin–Rubel theorem admits the location of $\mathsf Z$ and $\mathsf W$ near and on $i\mathbb R$.
Keywords: entire function, distribution of zeros of entire function, logarithmic characteristics and measures, Blaschke condition, Redheffer density.
@article{IVM_2022_8_a4,
     author = {A. E. Salimova},
     title = {A version of the {Malliavin--Rubel} {Theorem} on entire functions of exponential type  with zeros near the imaginary axis},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {46--55},
     publisher = {mathdoc},
     number = {8},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2022_8_a4/}
}
TY  - JOUR
AU  - A. E. Salimova
TI  - A version of the Malliavin--Rubel Theorem on entire functions of exponential type  with zeros near the imaginary axis
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2022
SP  - 46
EP  - 55
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2022_8_a4/
LA  - ru
ID  - IVM_2022_8_a4
ER  - 
%0 Journal Article
%A A. E. Salimova
%T A version of the Malliavin--Rubel Theorem on entire functions of exponential type  with zeros near the imaginary axis
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2022
%P 46-55
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2022_8_a4/
%G ru
%F IVM_2022_8_a4
A. E. Salimova. A version of the Malliavin--Rubel Theorem on entire functions of exponential type  with zeros near the imaginary axis. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2022), pp. 46-55. http://geodesic.mathdoc.fr/item/IVM_2022_8_a4/

[1] Khabibullin B. N., Polnota sistem eksponent i mnozhestva edinstvennosti, 4 izd. dop., RITs BashGU, Ufa, 2012 https://www.researchgate.net/publication/271841461

[2] Boas R. P. Jr., Entire functions, Academic Press, New York, 1954 | MR | Zbl

[3] Levin B. Ya., Raspredelenie kornei tselykh funktsii, Gostekhizdat, M., 1956

[4] Levin B.Ya., Lectures on entire functions, Transl. Math. Monographs, 150, Amer. Math. Soc., Providence RI, 1996 | DOI | MR | Zbl

[5] Malliavin P., Rubel L. A., “On small entire functions of exponential type with given zeros”, Bull. Soc. Math. France, 89:2 (1961), 175–201 | DOI | MR

[6] Rubel L. A., Colliander J. E., Entire and Meromorphic Functions, Springer-Verlag, New York, 1996 | MR | Zbl

[7] Khabibullin B. N., “O roste tselykh funktsii eksponentsialnogo tipa vdol mnimoi osi”, DAN SSSR. Matem., 302:2 (1988), 270–273

[8] Khabibullin B. N., “O roste tselykh funktsii eksponentsialnogo tipa vdol mnimoi osi”, Matem. sb., 180:5 (1989), 706–719 | Zbl

[9] Khabibullin B. N., “O roste vdol pryamoi tselykh funktsii eksponentsialnogo tipa s zadannymi nulyami”, Anal. Math., 17:3 (1991), 239–256 | DOI | MR | Zbl

[10] Khabibullin B. N., “O roste tselykh funktsii eksponentsialnogo tipa s nulyami vblizi pryamoi”, Matem. zametki, 70:4 (2001), 621–635 | Zbl

[11] Salimova A. E., Khabibullin B. N., “Rost tselykh funktsii eksponentsialnogo tipa i kharakteristiki raspredelenii tochek vdol pryamoi na kompleksnoi ploskosti”, Ufimsk. matem. zhurn., 13:3 (2021), 116–128 | MR | Zbl

[12] Salimova A. E., Khabibullin B. N., “Raspredelenie nulei tselykh funktsii eksponentsialnogo tipa s ogranicheniyami na rost vdol pryamoi”, Matem. zametki, 108:4 (2020), 588–600 | MR | Zbl

[13] Khabibullin B. N., Shmeleva A. V., Abdullina Z. F., “Vymetanie mer i subgarmonicheskikh funktsii na sistemu luchei. II. Vymetaniya konechnogo roda i regulyarnost rosta na odnom luche”, Algebra i analiz, 32:1 (2020), 208–243

[14] Salimova A. E., Khabibullin B. N., “Rost subgarmonicheskikh funktsii vdol pryamoi i raspredelenie ikh mer Rissa”, Ufimsk. matem. zhurn., 12:2 (2020), 35–48 | MR | Zbl

[15] Redheffer R. M., “Completeness of sets of complex exponentials”, Adv. Math., 24 (1977), 1–62 | DOI | MR | Zbl