A version of the Malliavin--Rubel Theorem on entire functions of exponential type with zeros near the imaginary axis
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2022), pp. 46-55

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathsf Z$ and $\mathsf W$ be two distributions of points on the complex plane $\mathbb C$. In the case of $\mathsf Z$ and $\mathsf W$, lying on the positive half-line $\mathbb R^+\subset \mathbb C$, the classic theorem Malliavin–Rubel 1960s, gives a necessary and sufficient correlation between $\mathsf Z$ and $\mathsf W$, when for each entire function $g\neq 0$ exponential type that vanish on $\mathsf W$, there exists a an entire function $f\neq 0$ exponential type that vanish on $\mathsf Z$, with the constraint $|f|\leq|g|$ on the imaginary axis $i\mathbb R$. In subsequent years, this theorem was extended to $\mathsf Z$ and $\mathsf W$ located outside of some pair of angles containing $i\mathbb R$ inside. Our version of Malliavin–Rubel theorem admits the location of $\mathsf Z$ and $\mathsf W$ near and on $i\mathbb R$.
Keywords: entire function, distribution of zeros of entire function, logarithmic characteristics and measures, Blaschke condition, Redheffer density.
@article{IVM_2022_8_a4,
     author = {A. E. Salimova},
     title = {A version of the {Malliavin--Rubel} {Theorem} on entire functions of exponential type  with zeros near the imaginary axis},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {46--55},
     publisher = {mathdoc},
     number = {8},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2022_8_a4/}
}
TY  - JOUR
AU  - A. E. Salimova
TI  - A version of the Malliavin--Rubel Theorem on entire functions of exponential type  with zeros near the imaginary axis
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2022
SP  - 46
EP  - 55
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2022_8_a4/
LA  - ru
ID  - IVM_2022_8_a4
ER  - 
%0 Journal Article
%A A. E. Salimova
%T A version of the Malliavin--Rubel Theorem on entire functions of exponential type  with zeros near the imaginary axis
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2022
%P 46-55
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2022_8_a4/
%G ru
%F IVM_2022_8_a4
A. E. Salimova. A version of the Malliavin--Rubel Theorem on entire functions of exponential type  with zeros near the imaginary axis. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2022), pp. 46-55. http://geodesic.mathdoc.fr/item/IVM_2022_8_a4/