On the Darboux problem for a hyperbolic system of equations with multiple characteristics
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2022), pp. 39-45.

Voir la notice de l'article provenant de la source Math-Net.Ru

The existence and uniqueness of the solution of a boundary value problem with conditions on one of the characteristics and on a free line for a system of hyperbolic equations with multiple characteristics are proved. Once an analogue of the Riemann–Hadamard method has been worked out for the specified problem, the definition of the Riemann–Hadamard matrix is given. The solution of this problem is constructed in terms of the introduced Riemann–Hadamard matrix.
Keywords: hyperbolic system, Riemann method, Riemann–Hadamard method, characteristics.
Mots-clés : Riemann matrix, Riemann–Hadamard matrix
@article{IVM_2022_8_a3,
     author = {A. N. Mironov and A. P. Volkov},
     title = {On the {Darboux} problem for a hyperbolic system of equations with multiple characteristics},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {39--45},
     publisher = {mathdoc},
     number = {8},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2022_8_a3/}
}
TY  - JOUR
AU  - A. N. Mironov
AU  - A. P. Volkov
TI  - On the Darboux problem for a hyperbolic system of equations with multiple characteristics
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2022
SP  - 39
EP  - 45
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2022_8_a3/
LA  - ru
ID  - IVM_2022_8_a3
ER  - 
%0 Journal Article
%A A. N. Mironov
%A A. P. Volkov
%T On the Darboux problem for a hyperbolic system of equations with multiple characteristics
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2022
%P 39-45
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2022_8_a3/
%G ru
%F IVM_2022_8_a3
A. N. Mironov; A. P. Volkov. On the Darboux problem for a hyperbolic system of equations with multiple characteristics. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2022), pp. 39-45. http://geodesic.mathdoc.fr/item/IVM_2022_8_a3/

[1] Bitsadze A. V., “O strukturnykh svoistvakh reshenii giperbolicheskikh sistem uravnenii v chastnykh proizvodnykh pervogo poryadka”, Matem. modelirovanie, 6:6 (1994), 22–31 | MR | Zbl

[2] Chekmarev T. V., “Formuly resheniya zadachi Gursa dlya odnoi lineinoi sistemy uravnenii s chastnymi proizvodnymi”, Differents. uravneniya, 18:9 (1982), 1614–1622 | MR

[3] Chekmarev T. V., Sistemy uravnenii smeshannogo tipa, NGTU, N. Novgorod, 1995

[4] Pleschinskaya I. E., “Ob ekvivalentnosti nekotorykh klassov ellipticheskikh i giperbolicheskikh sistem pervogo poryadka i uravnenii vtorogo poryadka s chastnymi proizvodnymi”, Differents. uravneniya, 23:9 (1987), 1634–1637 | MR

[5] Romanovskii R. K., “O matritsakh Rimana pervogo i vtorogo roda”, Matem. sb., 127:4 (1985), 494–501 | MR | Zbl

[6] Romanovskii R. K., “Eksponentsialno rasscheplyaemye giperbolicheskie sistemy s dvumya nezavisimymi peremennymi”, Matem. sb., 133:3 (1987), 341–355 | Zbl

[7] Vorobeva E. V., Romanovskii R. K., “Metod kharakteristik dlya giperbolicheskikh kraevykh zadach na ploskosti”, Sib. matem. zhurn., 41:3 (2000), 531–540 | MR

[8] Mironova L. B., “O metode Rimana v $R^n$ dlya odnoi sistemy s kratnymi kharakteristikami”, Izv. vuzov. Matem., 2006, no. 1, 34–39 | Zbl

[9] Mironova L. B., “O kharakteristicheskikh zadachakh dlya odnoi sistemy s dvukratnymi starshimi chastnymi proizvodnymi”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-matem. nauki, 43 (2006), 31–37

[10] Zhegalov V. I., Mironova L. B., “Ob odnoi sisteme uravnenii s dvukratnymi starshimi chastnymi proizvodnymi”, Izv. vuzov. Matem., 2007, no. 3, 12–21 | Zbl

[11] Romanovskii R. K., Mendziv M. V., “Ustoichivost reshenii zadachi Koshi dlya giperbolicheskoi sistemy na ploskosti s periodicheskimi po vremeni koeffitsientami”, Sib. matem. zhurn., 48:5 (2007), 1134–1141 | MR | Zbl

[12] Zhegalov V. I., “Zadacha s normalnymi proizvodnymi v granichnykh usloviyakh dlya sistemy differentsialnykh uravnenii”, Izv. vuzov. Matem., 2008, no. 8, 70–72 | Zbl

[13] Voronova Yu. G., “O zadache Koshi dlya lineinykh giperbolicheskikh sistem uravnenii s nulevymi obobschennymi invariantami Laplasa”, Ufimsk. matem. zhurn., 2:2 (2010), 20–26 | Zbl

[14] Zhiber A. V., Kostrigina O. S., “Zadacha Gursa dlya nelineinykh giperbolicheskikh sistem uravnenii s integralami pervogo i vtorogo poryadka”, Ufimsk. matem. zhurn., 3:3 (2011), 67–79 | MR | Zbl

[15] Sozontova E. A., “O kharakteristicheskikh zadachakh s normalnymi proizvodnymi dlya sistemy giperbolicheskogo tipa”, Izv. vuzov. Matem., 2013, no. 10, 43–54 | MR | Zbl

[16] Romanovskii R. K., Medvedev Yu. A., “Optimalnoe dvustoronnee granichnoe upravlenie teploperenosom v sterzhne. Giperbolicheskaya model”, Izv. vuzov. Matem., 2016, no. 6, 54–60 | Zbl

[17] Andreev A. A., Yakovleva Yu. O., “Zadacha Koshi dlya sistemy differentsialnykh uravnenii giperbolicheskogo tipa poryadka $n$ s nekratnymi kharakteristikami”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-matem. nauki, 21:4 (2017), 752–759 | Zbl

[18] Mironov A. N., Mironova L. B., Yakovleva Yu. O., “Metod Rimana dlya uravnenii s dominiruyuschei chastnoi proizvodnoi”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-matem. nauki, 25:2 (2021), 207–240 | Zbl

[19] Mironova L. B., “Boundary-value problems with data on characteristics for hyperbolic systems of equations”, Lobachevskii J. Math., 41:3 (2020), 400–406 | DOI | MR | Zbl

[20] Mironov A. N., Mironova L. B., “Metod Rimana–Adamara dlya odnoi sistemy v trekhmernom prostranstve”, Differents. uravneniya, 57:8 (2021), 1063–1070 | MR | Zbl