On the Darboux problem for a hyperbolic system of equations with multiple characteristics
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2022), pp. 39-45
Voir la notice de l'article provenant de la source Math-Net.Ru
The existence and uniqueness of the solution of a boundary value problem with conditions on one of the characteristics and on a free line for a system of hyperbolic equations with multiple characteristics are proved. Once an analogue of the Riemann–Hadamard method has been worked out for the specified problem, the definition of the Riemann–Hadamard matrix is given. The solution of this problem is constructed in terms of the introduced Riemann–Hadamard matrix.
Keywords:
hyperbolic system, Riemann method, Riemann–Hadamard method, characteristics.
Mots-clés : Riemann matrix, Riemann–Hadamard matrix
Mots-clés : Riemann matrix, Riemann–Hadamard matrix
@article{IVM_2022_8_a3,
author = {A. N. Mironov and A. P. Volkov},
title = {On the {Darboux} problem for a hyperbolic system of equations with multiple characteristics},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {39--45},
publisher = {mathdoc},
number = {8},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2022_8_a3/}
}
TY - JOUR AU - A. N. Mironov AU - A. P. Volkov TI - On the Darboux problem for a hyperbolic system of equations with multiple characteristics JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2022 SP - 39 EP - 45 IS - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2022_8_a3/ LA - ru ID - IVM_2022_8_a3 ER -
A. N. Mironov; A. P. Volkov. On the Darboux problem for a hyperbolic system of equations with multiple characteristics. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2022), pp. 39-45. http://geodesic.mathdoc.fr/item/IVM_2022_8_a3/