Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2022_8_a1, author = {Salih Bouternikh and Tahar Zerzaihi}, title = {On some properties of ultrametric meromorphic solutions of difference equations of {Malmquist} type}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {24--33}, publisher = {mathdoc}, number = {8}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2022_8_a1/} }
TY - JOUR AU - Salih Bouternikh AU - Tahar Zerzaihi TI - On some properties of ultrametric meromorphic solutions of difference equations of Malmquist type JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2022 SP - 24 EP - 33 IS - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2022_8_a1/ LA - ru ID - IVM_2022_8_a1 ER -
%0 Journal Article %A Salih Bouternikh %A Tahar Zerzaihi %T On some properties of ultrametric meromorphic solutions of difference equations of Malmquist type %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2022 %P 24-33 %N 8 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2022_8_a1/ %G ru %F IVM_2022_8_a1
Salih Bouternikh; Tahar Zerzaihi. On some properties of ultrametric meromorphic solutions of difference equations of Malmquist type. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2022), pp. 24-33. http://geodesic.mathdoc.fr/item/IVM_2022_8_a1/
[1] Li P., Yang C. C., “Meromorphic solutions of functional equations with nonconstant coefficients”, Proc. Japan Acad. Ser. A, 82:2-10 (2007), 183–186 | MR
[2] Bourourou S., Boutabaa A., Zerzaihi T., “On the growth of solutions of difference equations in ultrametric fields”, Indag. Math. (N.S.), 27:1 (2016), 112–123 | DOI | MR | Zbl
[3] Boutabaa A., “Theorie de Nevanlinna $p$-adique ($p$-adic Nevanlinna theory)”, Manuscripta Math., 67:3 (1990), 251–269 | DOI | MR | Zbl
[4] Boutabaa A., “Applications de la théorie de Nevanlinna $p$-adique”, Collect. Math., 42:1 (1991), 75–93 | MR | Zbl
[5] Boutabaa A., Escassut A., “Applications of the $p$-adic Nevanlinna theory to functional equations”, Ann. Inst. Fourier, 50:3 (2000), 751–766 | DOI | MR | Zbl
[6] Escassut A., Boussaf K., Boutabaa A., “Order, type and cotype of growth for $p$-adic entire functions, $p$-Adic Numbers Ultrametric”, Anal. Appl., 8:4 (2016), 280–297 | MR | Zbl
[7] Hu P.C., Yang C. C., Meromorphic functions over non-Archimedean fields, Springer Science, 2000 | MR
[8] Khoai H. H., “On $p$-adic meromorphic functions”, Duke Math. J., 50:3 (1983), 695–711 | DOI | MR | Zbl
[9] Ru M., “A note on $p$-adic Nevanlinna theory”, Proc. Am. Math. Soc., 129:5 (2001), 1263–1269 | MR | Zbl
[10] Ablowitz M. J., Halburd R., Herbst B., “On the extension of the Painlevé property to difference equations”, Nonlin., 13:3 (2000), 889–905 | DOI | MR | Zbl
[11] Heittokangas J., Korhonen R., Laine I., Rieppo J., Tohge K., “Complex difference equations of Malmquist type”, Comput. Methods Funct. Theory, 1:1 (2001), 27–39 | DOI | MR | Zbl
[12] Katok S., $p$-adic Analysis Compared with Real, Amer. Math. Soc., 2007 | MR | Zbl
[13] Zerzaihi T., Kecies M., Michael K., “Hensel codes of square roots of $p$-adic numbers”, Appl. Anal. Discrete Math., 4:1 (2010), 32–44 | DOI | MR | Zbl
[14] Robert A., A course in $p$-adic analysis, Springer Science, N. Y., 2013 | MR
[15] Mokhon'ko A.Z., “On the Nevanlinna characteristics of some meromorphic functions”, Theory of Functions, Functional Anal. and Their Appl., Kharkiv, 14 (1971), 83–87 | Zbl