A nonlocal problem for fourth-order loaded hyperbolic equations
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2022), pp. 3-23.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we consider the nonlocal problem for fourth-order loaded hyperbolic equations with two independent variables. Considered problem is reduced to an equivalent problem, consisting nonlocal problem for a system of loaded hyperbolic equations of second order with functional parameters and integral relations by method introducing new unknown functions. Algorithms for finding solution to the equivalent problem are proposed. Conditions for well-posedness to the nonlocal problem for the system of loaded hyperbolic equations of second order are obtained. Conditions for the existence of unique classical solution to the nonlocal problem for fourth-order loaded hyperbolic equations are established.
Keywords: fourth-order loaded hyperbolic equation, nonlocal problem, system of loaded hyperbolic equations, problem with parameter, algorithm, solvability.
@article{IVM_2022_8_a0,
     author = {G. A. Abdikalikova and A. T. Assanova and Sh. T. Shekerbekova},
     title = {A nonlocal problem for fourth-order loaded hyperbolic equations},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {3--23},
     publisher = {mathdoc},
     number = {8},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2022_8_a0/}
}
TY  - JOUR
AU  - G. A. Abdikalikova
AU  - A. T. Assanova
AU  - Sh. T. Shekerbekova
TI  - A nonlocal problem for fourth-order loaded hyperbolic equations
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2022
SP  - 3
EP  - 23
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2022_8_a0/
LA  - ru
ID  - IVM_2022_8_a0
ER  - 
%0 Journal Article
%A G. A. Abdikalikova
%A A. T. Assanova
%A Sh. T. Shekerbekova
%T A nonlocal problem for fourth-order loaded hyperbolic equations
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2022
%P 3-23
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2022_8_a0/
%G ru
%F IVM_2022_8_a0
G. A. Abdikalikova; A. T. Assanova; Sh. T. Shekerbekova. A nonlocal problem for fourth-order loaded hyperbolic equations. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2022), pp. 3-23. http://geodesic.mathdoc.fr/item/IVM_2022_8_a0/

[1] Nakhushev A. M., Zadachi so smescheniem dlya uravnenii v chastnykh proizvodnykh, Nauka, M., 2006

[2] Nakhushev A. M., Nagruzhennye uravneniya i ikh primeneniya, Nauka, M., 2012

[3] Boichuk A. A., Samoilenko A. M., Generalized inverse operators and Fredholm boundary-value problems, De Gruyter, Berlin, 2016 | MR | Zbl

[4] Burton T. A., Integral and differential equations, Academic Press, New York, 1983 | MR | Zbl

[5] Dzhokhadze O. M., “The Riemann function for higher-order hyperbolic equations and systems with dominated lower terms”, Diff. Equat., 39:10 (2003), 1440–1453 | DOI | MR | Zbl

[6] Lakshmikantham V., Rao M. R.M., Theory of Integro-Differential Equations, Gordon and Breach Sci. Publ., Lausanne, 1995 | MR | Zbl

[7] Pr$\ddot{u}$ss J., Evolutionary integral equations and applications, Springer, Basel–Heidelberg–New York–Dordrecht–London, 1993

[8] Wazwaz A.-M., Linear and Nonlinear Integral Equations. Methods and Applications, Springer, Heidelberg–Dordrecht–London–New York, 2011 | MR | Zbl

[9] Zhang H., Han X., Yang X., “Quintic B-spline collocation method for fourth order partial integro-differential equations with a weakly singular kernel”, Appl. Math. and Computation, 219:12 (2013), 6565–6575 | DOI | MR | Zbl

[10] Mamedov I. G., “Fundamentalnoe reshenie nachalno-kraevoi zadachi dlya psevdoparabolicheskogo uravneniya chetvertogo poryadka s negladkimi koeffitsientami”, Vladikav. matem. zhurn., 12:1 (2010), 17–32 | MR | Zbl

[11] Mamedov I. G., “Nelokalnaya kombinirovannaya zadacha tipa Bitsadze–Samarskogo i Samarskogo–Ionkina dlya sistemy psevdoparabolicheskikh uravnenii”, Vladikav. matem. zhurn., 16:1 (2014), 30–41 | MR | Zbl

[12] Ptashnik B. I., Nekorrektnye granichnye zadachi dlya differentsialnykh uravnenii s chastnymi proizvodnymi, Naukova dumka, Kiev, 1984 | MR

[13] Kiguradze I., Kiguradze T., “On solvability of boundary value problems for higher-order nonlinear hyperbolic equations”, Nonlinear Anal., 69:10 (2008), 1914–1933 | DOI | MR | Zbl

[14] Kiguradze T., “On solvability and well-posedness of boundary value problems for nonlinear hyperbolic equations of the fourth order”, Georgian Math. J., 15:3 (2008), 555–569 | DOI | MR | Zbl

[15] Kiguradze T., “The Valle-Poussin problem for higher order nonlinear hyperbolic equations”, Computers and Math. Appl., 59:6 (2010), 994–1002 | DOI | MR | Zbl

[16] Kiguradze T., Lakshmikantham V., “On the Dirichlet problem for fourth order linear hyperbolic equations”, Nonlinear Anal., 49:2 (2002), 197–219 | DOI | MR | Zbl

[17] Kiguradze T., Lakshmikantham V., “On Dirichlet problem in a characteristic rectangle for higher order linear hyperbolic equations”, Nonlinear Anal., 50:8 (2002), 1153–1178 | DOI | MR | Zbl

[18] Kiguradze T. I., Kusano T., “Well-posedness of initial-boundary value problems for higher-order linear hyperbolic equations with two independent variables”, Diff. Equat., 39:4 (2003), 553–563 | DOI | MR | Zbl

[19] Kiguradze T. I., Kusano T., “On ill-posed initial-boundary value problems for higher order linear hyperbolic equations with two independent variables”, Diff. Equat., 39:10 (2003), 1379–1394 | DOI | MR | Zbl

[20] Mamedov I. G., “On correct solvability of a problem with a loaded boundary conditions for a fourth order pseudoparabolic equation”, Memoires on Diff. Equat. and Math. Phys., 43 (2008), 107–118 | MR | Zbl

[21] Midodashvili B., “Generalized Goursat problem for a spatial fourth order hyperbolic equation with dominated low terms”, Proc. of A. Razmadze Math. Institute, 138 (2005), 43–54 | MR | Zbl

[22] Asanova A. T., Tokmurzin Zh. S., “Kraevaya zadacha dlya sistemy psevdogiperbolicheskikh uravnenii chetvertogo poryadka s nelokalnym usloviem”, Izv. vuzov. Matem., 2020, no. 9, 3–14

[23] Assanova A. T., Tokmurzin Z. S., “A nonlocal multipoint problem for a system of fourth-order partial differential equations”, Eurasian Math. J., 11:3 (2020), 8–20 | DOI | MR | Zbl

[24] Assanova A. T., Tokmurzin Z. S., “An approach to the solution of the initial boundary-value problem for systems of fourth-order hyperbolic equations”, Math. Notes, 108:1–2 (2020), 3–14 | DOI | MR | Zbl

[25] Asanova A. T., Kadirbaeva Zh.M., Bakirova E. A., “On the unique solvability of a nonlocal boundary-value problem for systems of loaded hyperbolic equations with impulsive actions”, Ukrain. Math. J., 69:8 (2018), 1175–1195 | DOI | MR | Zbl

[26] Assanova A. T., Kadirbayeva Z. M., “Periodic problem for an impulsive system of the loaded hyperbolic equations”, Electronic J. Diff. Equat., 2018 (2018), 72, 1–8 | DOI | MR

[27] Assanova A. T., Imanchiyev A. E., Kadirbayeva Zh.M., “Numerical solution of systems of loaded ordinary differential equations with multipoint conditions”, Comput. Math. and Math. Phys., 58:4 (2018), 508–516 | DOI | MR | Zbl

[28] Assanova A. T., Kadirbayeva Z. M., “On the numerical algorithms of parametrization method for solving a two-point boundary-value problem for impulsive systems of loaded differential equations”, Comput. and Appl. Math., 37:4 (2018), 4966–4976 | DOI | MR | Zbl

[29] Dzhumabayev D. S., “Criteria for the unique solvability of a linear boundary-value problem for an ordinary differential equation”, U.S.S.R. Comput. Math. and Math. Phys., 29:1 (1989), 34–46 | DOI | MR