Spectral estimates for fourth-order differential operator with periodic coefficients
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2022), pp. 86-92
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider a self-adjoint fourth-order operator on the unit interval with real 1-periodic coefficients and Neumann–Dirichlet type boundary conditions. We determine eigenvalue asymptotics at high energy.
Keywords:
spectrum, fourth-order differential operator, eigenvalue asymptotics, fundamental matrix.
@article{IVM_2022_7_a8,
author = {D. M. Polyakov},
title = {Spectral estimates for fourth-order differential operator with periodic coefficients},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {86--92},
publisher = {mathdoc},
number = {7},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2022_7_a8/}
}
TY - JOUR AU - D. M. Polyakov TI - Spectral estimates for fourth-order differential operator with periodic coefficients JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2022 SP - 86 EP - 92 IS - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2022_7_a8/ LA - ru ID - IVM_2022_7_a8 ER -
D. M. Polyakov. Spectral estimates for fourth-order differential operator with periodic coefficients. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2022), pp. 86-92. http://geodesic.mathdoc.fr/item/IVM_2022_7_a8/