Spectral estimates for fourth-order differential operator with periodic coefficients
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2022), pp. 86-92

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a self-adjoint fourth-order operator on the unit interval with real 1-periodic coefficients and Neumann–Dirichlet type boundary conditions. We determine eigenvalue asymptotics at high energy.
Keywords: spectrum, fourth-order differential operator, eigenvalue asymptotics, fundamental matrix.
@article{IVM_2022_7_a8,
     author = {D. M. Polyakov},
     title = {Spectral estimates for fourth-order differential operator with periodic coefficients},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {86--92},
     publisher = {mathdoc},
     number = {7},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2022_7_a8/}
}
TY  - JOUR
AU  - D. M. Polyakov
TI  - Spectral estimates for fourth-order differential operator with periodic coefficients
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2022
SP  - 86
EP  - 92
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2022_7_a8/
LA  - ru
ID  - IVM_2022_7_a8
ER  - 
%0 Journal Article
%A D. M. Polyakov
%T Spectral estimates for fourth-order differential operator with periodic coefficients
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2022
%P 86-92
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2022_7_a8/
%G ru
%F IVM_2022_7_a8
D. M. Polyakov. Spectral estimates for fourth-order differential operator with periodic coefficients. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2022), pp. 86-92. http://geodesic.mathdoc.fr/item/IVM_2022_7_a8/