A boundary value problem for a mixed type equation with singular coefficients
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2022), pp. 18-29.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we investigate a boundary value problem with the Frankl and Bitsadze-Samarskii condition on the degeneration line and on parallel characteristics for a mixed-type equation with singular coefficients. The uniqueness of the solution to the problem is proved using the extremum principle. The theory of singular integral equations and Fredholm integral equations are used to prove the existence of a solution to the problem.
Keywords: extremum principle, uniqueness of a solution, integral equations, isolated singularity of the first order, index of an equation.
Mots-clés : existence of a solution
@article{IVM_2022_7_a2,
     author = {M. Kh. Ruziev},
     title = {A boundary value problem for a mixed type equation with singular coefficients},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {18--29},
     publisher = {mathdoc},
     number = {7},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2022_7_a2/}
}
TY  - JOUR
AU  - M. Kh. Ruziev
TI  - A boundary value problem for a mixed type equation with singular coefficients
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2022
SP  - 18
EP  - 29
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2022_7_a2/
LA  - ru
ID  - IVM_2022_7_a2
ER  - 
%0 Journal Article
%A M. Kh. Ruziev
%T A boundary value problem for a mixed type equation with singular coefficients
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2022
%P 18-29
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2022_7_a2/
%G ru
%F IVM_2022_7_a2
M. Kh. Ruziev. A boundary value problem for a mixed type equation with singular coefficients. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2022), pp. 18-29. http://geodesic.mathdoc.fr/item/IVM_2022_7_a2/

[1] Smirnov M. M., Uravneniya smeshannogo tipa, Vyssh. shk., M., 1985 | MR

[2] Repin O. A., Kumykova S. K., “Nelokalnaya zadacha s obobschennymi operatorami drobnogo differentsirovaniya dlya uravneniya smeshannogo tipa v neogranichennoi oblasti”, Izv. vuzov. Matem., 2015, no. 4, 60–64 | Zbl

[3] Khairullin R. S., “Kraevaya zadacha dlya singulyarnogo uravneniya s silnym vyrozhdeniem”, Matem. modelirovanie i kraevye zadachi, 2010, no. 3, 272–274

[4] Mirsaburov M., Ruziev M. Kh., “Ob odnoi kraevoi zadache dlya odnogo klassa uravnenii smeshannogo tipa v neogranichennoi oblasti”, Differents. uravneniya, 47:1 (2011), 112–119 | MR | Zbl

[5] Ruziev M. Kh., “K zadacham so smescheniyami dlya uravnenii smeshannogo elliptiko-giperbolicheskogo tipa”, Izv. vuzov. Matem., 2012, no. 1, 72–82 | Zbl

[6] Ruziev M. Kh., “Zadacha s usloviem Franklya i Bitsadze–Samarskogo na linii vyrozhdeniya i na parallelnykh kharakteristikakh dlya uravneniya smeshannogo tipa”, Izv. vuzov. Matem., 2012, no. 8, 43–52 | Zbl

[7] Sabitov K. B., Safina R. M., “Pervaya granichnaya zadacha dlya uravneniya smeshannogo tipa s singulyarnym koeffitsientom”, Izv. RAN, Ser. Matem., 82:2 (2018), 79–119 | MR

[8] Mirsaburov M., “Kraevaya zadacha dlya odnogo klassa uravnenii smeshannogo tipa s usloviem Bitsadze-Samarskogo na parallelnykh kharakteristikakh”, Differents. uravneniya, 37:9 (2001), 1281–1284 | MR | Zbl

[9] Trikomi F., O lineinykh uravneniyakh v chastnykh proizvodnykh vtorogo poryadka smeshannogo tipa, Gostekhizdat, M.-L., 1947

[10] Frankl F. I., “Obtekanie profilei potokom dozvukovoi skorosti so sverkhzvukovoi zonoi, okanchivayuscheisya pryamym skachkom uplotneniya”, Prikl. matem. i mekhan., 20:2 (1956), 196–202 | Zbl

[11] Sabitov K. B., “K teorii zadachi Franklya dlya uravnenii smeshannogo tipa”, Izv. RAN, Ser. Matem., 81:1 (2017), 101–118 | MR

[12] Salakhitdinov M. S., Mirsaburov M., Nelokalnye zadachi dlya uravnenii smeshannogo tipa s singulyarnymi koeffitsientami, Universitet, Tashkent, 2005

[13] Bitsadze A. V., Nekotorye klassy uravnenii v chastnykh proizvodnykh, Nauka, M., 1981 | MR

[14] Ruziev M., Reissig M., “Tricomi type equations with terms of lower order”, Inter. J. Dynamical Syst. and Diff. Equat., 6:1 (2016), 1–15 | DOI | MR | Zbl

[15] Muskhelishvili N. I., Singulyarnye integralnye uravneniya. Granichnye zadachi teorii funktsii i nekotorye ikh prilozheniya k matematicheskoi fizike, Nauka, M., 1968 | MR

[16] Gakhov F. D., Uravneniya tipa svertki, Nauka, M., 1978