A boundary value problem for a mixed type equation with singular coefficients
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2022), pp. 18-29
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper we investigate a boundary value problem with the Frankl and Bitsadze-Samarskii condition on the degeneration line and on parallel characteristics for a mixed-type equation with singular coefficients. The uniqueness of the solution to the problem is proved using the extremum principle. The theory of singular integral equations and Fredholm integral equations are used to prove the existence of a solution to the problem.
Keywords:
extremum principle, uniqueness of a solution, integral equations, isolated singularity of the first order, index of an equation.
Mots-clés : existence of a solution
Mots-clés : existence of a solution
@article{IVM_2022_7_a2,
author = {M. Kh. Ruziev},
title = {A boundary value problem for a mixed type equation with singular coefficients},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {18--29},
publisher = {mathdoc},
number = {7},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2022_7_a2/}
}
M. Kh. Ruziev. A boundary value problem for a mixed type equation with singular coefficients. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2022), pp. 18-29. http://geodesic.mathdoc.fr/item/IVM_2022_7_a2/