Boundary-value problem for a differential-algebraic system with constant delay with variable rank of leading coefficient matrix
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2022), pp. 67-78.

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct conditions for the existence of solution of linear boundary value problem for system of differential-algebraic equations with variable rank of leading coefficient matrix. Cauchy problem for the linear differential-algebraic equation with constant delay is considered. Sufficient conditions for solvability and also a construction of generalized Green's operator for the linear boundary value problem for system of differential-algebraic equations with variable rank of leading coefficient matrix are obtained.
Keywords: green operator, boundary-value problem, differential-algebraic equation with constant delay.
@article{IVM_2022_6_a6,
     author = {S. M. Chujko},
     title = {Boundary-value problem for a differential-algebraic system with constant delay with variable rank of leading coefficient matrix},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {67--78},
     publisher = {mathdoc},
     number = {6},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2022_6_a6/}
}
TY  - JOUR
AU  - S. M. Chujko
TI  - Boundary-value problem for a differential-algebraic system with constant delay with variable rank of leading coefficient matrix
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2022
SP  - 67
EP  - 78
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2022_6_a6/
LA  - ru
ID  - IVM_2022_6_a6
ER  - 
%0 Journal Article
%A S. M. Chujko
%T Boundary-value problem for a differential-algebraic system with constant delay with variable rank of leading coefficient matrix
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2022
%P 67-78
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2022_6_a6/
%G ru
%F IVM_2022_6_a6
S. M. Chujko. Boundary-value problem for a differential-algebraic system with constant delay with variable rank of leading coefficient matrix. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2022), pp. 67-78. http://geodesic.mathdoc.fr/item/IVM_2022_6_a6/

[1] Azbelev N.V., Maksimov V.P., Rakhmatullina L.F., Vvedenie v teoriyu funktsionalno-differentsialnykh uravnenii, Nauka, M., 1991 | MR

[2] Boichuk A.A., Samoilenko A.M., Generalized inverse operators and Fredholm boundary-value problems, De Gruyter, Berlin–Boston, 2016 | MR | Zbl

[3] Campbell S.L., Singular Systems of differential equations, Pitman Advanced Publ. Program, San Francisco–London–Melbourne, 1980 | MR | Zbl

[4] Campbell S.L., Petzold L.R., “Canonical forms and solvable singular systems of differential equations”, SIAM J. Alg. Descrete Meth., 1983, no. 4, 517–521 | DOI | MR | Zbl

[5] Boyarintsev Yu.E., Chistyakov V.F., Algebro-differentsialnye sistemy. Metody resheniya i issledovaniya, Nauka, Novosibirsk, 1998

[6] Chuiko S.M., “On a reduction of the order in a differential-algebraic system”, J. Math. Sci., 235:1 (2018), 2–18 | DOI | MR

[7] Chuiko S.M., “A generalized Green operator for a linear Noetherian differential-algebraic boundary value problem”, Siberian Advances in Math., 30 (2020), 177–191 | DOI

[8] Chuiko S.M., “O razreshimosti zadachi Koshi dlya differentsialno-algebraicheskoi sistemy s sosredotochennym zapazdyvaniem”, Izv. vuzov. Matem., 2019, no. 12, 91–105 | Zbl

[9] Mitropolskii Yu.A., Martynyuk D.I., Lektsii po teorii kolebanii sistem s zapazdyvaniem, Izd-vo Kiev. un-ta, M.–Kiev, 1969 | MR

[10] Elsgolts L.E., Norkin S.B, Vvedenie v teoriyu differentsialnykh uravnenii s otklonyayuschimsya argumentom, Nauka, M., 1971 | MR

[11] Scheglova A.A, “Ob algebro-differentsialnykh sistemakh s otklonyayuschimsya argumentom”, Izv. vuzov. Matem., 2002, no. 7, 65–80

[12] Chuiko S.M., “Weakly nonlinear boundary value problem for a matrix differential equation”, Miskolc Math. Notes, 17:1 (2016), 139–150 | DOI | MR | Zbl

[13] Perepelitsa M. A., Pokutnyi A.A., “Issledovanie razreshimosti slabo-nelineinykh differentsialno-algebraicheskikh sistem”, Vestn. YuUrGU. Ser. «Matem. modelirovanie i programmirovanie», 6:4 (2013), 55–62 | Zbl

[14] Boichuk A., Chuiko S., “Autonomous weakly nonlinear boundary value problems in critical cases”, Diff. Equat., 1992, no. 10, 1353–1358 | MR | Zbl

[15] Chuiko S.M., Nesmelova O.V., “Nonlinear boundary-value problems for degenerate differential-algebraic systems”, J. Math. Sci., 252:4 (2021), 463–471 | DOI | MR | Zbl

[16] Chuiko S.M., Boichuk I.A., “An autonomous Noetherian boundary value problem in the critical case”, Nonlinear Oscillations (N.Y.), 12:3 (2009), 405–416 | MR | Zbl

[17] Krein S.G., Lineinye uravneniya v banakhovom prostranstve, Nauka, M., 1971

[18] Tikhonov A.N., Arsenin V.Ya., Metody resheniya nekorrektnykh zadach, Nauka, M., 1986

[19] Chuiko S.M., “On the regularization of a linear Fredholm boundary-value problem by a degenerate pulsed action”, J. Math. Sci., 197:1 (2014), 138–150 | DOI | MR | Zbl

[20] Akhiezer N.I., Lektsii po teorii approksimatsii, Nauka, M., 1965 | MR

[21] Chuiko S.M., “On the solution of a linear Noetherian boundary-value problem for a differential-algebraic system with concentrated delay by the method of least squares”, J. Math. Sci., 246:3 (2020), 622–630 | DOI | MR | Zbl

[22] Khardi G.Kh, Raskhodyaschiesya ryady, Izd. In. lit., M., 1951 | MR

[23] Chuiko S.M., “Differential-algebraic boundary value problems with with variable rank of leading coefficient matrix”, J. Math. Sci., 259:1 (2021), 10–22 | DOI | MR | Zbl