Problem with an analogue of the Bitsadze–Samaraskii condition for one class of degenerate hyperbolic equation
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2022), pp. 54-59
Cet article a éte moissonné depuis la source Math-Net.Ru
In a characteristic triangle, for a degenerate hyperbolic equation with a singular coefficient, the correctness of the problem with an analogue of the Bitsadze–Samarskii condition on the boundary and parallel internal characteristics is proved.
Keywords:
Bitsadze–Samarskii condition, internal characteristics, functional equation with two shifts, counterexample, combined method, successive approximation, iteration
Mots-clés : uniform convergence.
Mots-clés : uniform convergence.
@article{IVM_2022_6_a4,
author = {G. M. Mirsaburova},
title = {Problem with an analogue of the {Bitsadze{\textendash}Samaraskii} condition for one class of degenerate hyperbolic equation},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {54--59},
year = {2022},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2022_6_a4/}
}
TY - JOUR AU - G. M. Mirsaburova TI - Problem with an analogue of the Bitsadze–Samaraskii condition for one class of degenerate hyperbolic equation JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2022 SP - 54 EP - 59 IS - 6 UR - http://geodesic.mathdoc.fr/item/IVM_2022_6_a4/ LA - ru ID - IVM_2022_6_a4 ER -
G. M. Mirsaburova. Problem with an analogue of the Bitsadze–Samaraskii condition for one class of degenerate hyperbolic equation. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2022), pp. 54-59. http://geodesic.mathdoc.fr/item/IVM_2022_6_a4/
[1] Bitsadze A.V., Samarskii A.A., “O nekotorykh prosteishikh obobscheniyakh lineinykh ellipticheskikh kraevykh zadach”, DAN SSSR, 185:4 (1969), 739–740 | Zbl
[2] Salakhitdinov M.S., Mirsaburov M., Nelokalnye zadachi dlya uravnenii smeshannogo tipa s singulyarnymi koeffitsientami, Tashkent, 2005