Realization functionals and description of a modulus of smoothness in variable exponent Lebesgue spaces
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2022), pp. 13-25.

Voir la notice de l'article provenant de la source Math-Net.Ru

In variable exponent Lebesgue spaces the equivalence between generalized modulus of smoothness defined with help of one-sided Steklov means and realization functionals using Riesz-Zygmund and Euler means is established. The description of a class of functions which are equivalent to a generalized modulus of smoothness of order $r\in\mathbb N$ is given.
Mots-clés : variable exponent Lebesgue space
Keywords: generalized modulus of smoothness, $K$-functional, realization functional.
@article{IVM_2022_6_a1,
     author = {S. S. Volosivets},
     title = {Realization functionals and description of a modulus of smoothness in variable exponent {Lebesgue} spaces},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {13--25},
     publisher = {mathdoc},
     number = {6},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2022_6_a1/}
}
TY  - JOUR
AU  - S. S. Volosivets
TI  - Realization functionals and description of a modulus of smoothness in variable exponent Lebesgue spaces
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2022
SP  - 13
EP  - 25
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2022_6_a1/
LA  - ru
ID  - IVM_2022_6_a1
ER  - 
%0 Journal Article
%A S. S. Volosivets
%T Realization functionals and description of a modulus of smoothness in variable exponent Lebesgue spaces
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2022
%P 13-25
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2022_6_a1/
%G ru
%F IVM_2022_6_a1
S. S. Volosivets. Realization functionals and description of a modulus of smoothness in variable exponent Lebesgue spaces. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2022), pp. 13-25. http://geodesic.mathdoc.fr/item/IVM_2022_6_a1/

[1] DeVore R.A., Lorentz G.G., Constructive approximation, Springer, Berlin–Heidelberg–New York, 1993 | MR | Zbl

[2] Ditzian Z., Hristov V.H., Ivanov K.G., “Moduli of smoothness and $K$-functionals in $L_p$, $0

1$”, Constr. Approx., 11:1 (1995), 67–83 | DOI | MR | Zbl

[3] Akgün R., “Realization and characterization of modulus of smoothness in weighted Lebesgue spaces”, Algebra i analiz, 26:5 (2014), 64–87 | MR

[4] Timan A.F., Teoriya priblizheniya funktsii deistvitelnogo peremennogo, Gos. izd-vo fiz.-mat. lit-ry, M., 1960

[5] Jafarov S.Z., “Derivatives of a polynomial of the best approximation and modulus of smoothness in generalized Lebesgue spaces with variable exponent”, Demonstr. Math., 50:1 (2017), 245–251 | DOI | MR | Zbl

[6] Testici A., “On derivative of trigonometric polynomials and characterizations of modulus of smoothness in weighted Leebesgue space with variable exponent”, Period. Math. Hungar., 80:1 (2020), 59–73 | DOI | MR

[7] Tikhonov S., “On moduli of smoothness of fractional order”, Real Anal. Exchange, 30:2 (2004/05), 507–518 | DOI | MR

[8] Orlicz W., “Über conjugierte Exponentenfolgen”, Studia Math., 3 (1931), 200–211 | DOI

[9] Musielak J., Orlicz spaces and modular spaces, Lecture Notes in Math., 1034, Springer, Berlin-Heidelberg, 1983 | DOI | MR | Zbl

[10] Kolmogorov A.N., “Zur normierbarkeit eines allgemeinen topologischen linearen räumen”, Studia Math., 5:1 (1934), 29-38 | DOI

[11] Sharapudinov I.I., “O topologii prostranstva $\mathcal L^{p(t)}([0,1])$”, Matem. zametki, 26:4 (1979), 613–632 | MR | Zbl

[12] Kovác̆ik O., Rákosník J., “On spaces $L^{p(x)}$ and $W^{k,p(x)}$”, Czechoslovak Math. J., 41:4 (1991), 592–618 | DOI | MR | Zbl

[13] Diening L., Harjulehto P., Hästö P., Rúžička M., Lebesgue and Sobolev spaces with variable exponents, Lecture Notes in Math., 2017, Springer, Berlin-Heidelberg, 2011 | DOI | MR | Zbl

[14] Cruz-Uribe D., Fiorenza A., Variable Lebesgue spaces, Springer, Basel, 2013 | MR | Zbl

[15] Sharapudinov I.I., “O ravnomernoi ogranichennosti v $L^p$ ($p=p(x)$) nekotorykh semeistv operatorov svertki”, Matem. zametki, 59:2 (1996), 291–302 | Zbl

[16] Israfilov D.M., Kokilashvili V., Samko S., “Approximation in weighted Lebesgue and Smirnov spaces with variable exponent”, Proc. A. Razmadze Math. Inst., 143 (2007), 45–55 | MR

[17] Guven A., Israfilov D.M., “Trigonometric approximation in generalized Lebesgue space $L^{p(x)}$”, J. Math. Inequal., 4:2 (2010), 285–299 | DOI | MR | Zbl

[18] Akgün R., “Trigonometric approximation of functions in generalized Lebesgue spaces with variable exponent”, Ukranian Math. J., 63:1 (2011), 1–26 | DOI | MR | Zbl

[19] Akgün R., Kokilashvili V., “On converse theorems of trigonometric approximation in weighted variable exponent Lebesgue spaces”, Banach J. Math. Anal., 5:1 (2011), 70–82 | DOI | MR | Zbl

[20] Akgün R., Kokilashvili V., “Some notes on trigonometric approximation of $(\alpha,\psi)$-differentiable functions in weighted variable exponent Lebesgue spaces”, Proc. A. Razmadze Math. Inst., 163 (2013), 15–23 | MR

[21] Sharapudinov I.I., “Priblizhenie funktsii v $L^{p(x)}_{2\pi}$ trigonometricheskimi polinomami”, Izv. RAN. Ser. matem., 77:2 (2013), 197–224 | MR | Zbl

[22] Volosivets S.S., “Priblizhenie funktsii i ikh sopryazhennykh v prostranstvakh Lebega s peremennym pokazatelem”, Matem. sb., 208:1 (2017), 48–64 | MR | Zbl

[23] Bari N.K., Trigonometricheskie ryady, Fizmatgiz, M., 1961

[24] Cruz-Uribe D., Fiorenza A., Martell J.M., Pérez C., “The boundedness of classical operators on variable $L^p$ spaces”, Ann. Acad. Sci. Fennicae, 31 (2006), 239–264 | MR | Zbl

[25] Sharapudinov I.I., “Priblizhenie gladkikh funktsii v srednimi Valle-Pussena i lineinye metody summirovaniya ryadov Fure”, Izv. Sarat. un-ta. Nov. ser. Ser. Matem. Mekhan. Informatika, 13:1(1) (2013), 45–49 | MR | Zbl

[26] Volosivets S.S., Tyuleneva A.A., “Approximation of functions and their conjugates in $L^p$ and uniform metric by Euler means”, Demonstr. Math., 51:1 (2018), 141–150 | DOI | MR | Zbl

[27] Volosivets S.S., “Modified modulus of smoothness and approximation in weighted Lorentz spaces by Borel and Euler means”, Probl. Anal. Issues Anal., 10 (28):1 (2021), 87–100 | DOI | MR | Zbl

[28] Timan M.F., “Nailuchshee priblizhenie funktsii i lineinye metody summirovaniya ryadov Fure”, Izv. AN SSSR, ser. matem., 29:3 (1965), 587–604 | Zbl

[29] Trigub R.M., “Konstruktivnye kharakteristiki nekotorykh klassov funktsii”, Izv. AN SSSR, ser. matem., 29:3 (1965), 615–630

[30] Stechkin S.B., “Ob absolyutnoi skhodimosti ryadov Fure. II”, Izv. AN SSSR, ser. matem., 19:4 (1955), 221–246 | Zbl