Realization functionals and description of a modulus of smoothness in variable exponent Lebesgue spaces
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2022), pp. 13-25

Voir la notice de l'article provenant de la source Math-Net.Ru

In variable exponent Lebesgue spaces the equivalence between generalized modulus of smoothness defined with help of one-sided Steklov means and realization functionals using Riesz-Zygmund and Euler means is established. The description of a class of functions which are equivalent to a generalized modulus of smoothness of order $r\in\mathbb N$ is given.
Mots-clés : variable exponent Lebesgue space
Keywords: generalized modulus of smoothness, $K$-functional, realization functional.
@article{IVM_2022_6_a1,
     author = {S. S. Volosivets},
     title = {Realization functionals and description of a modulus of smoothness in variable exponent {Lebesgue} spaces},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {13--25},
     publisher = {mathdoc},
     number = {6},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2022_6_a1/}
}
TY  - JOUR
AU  - S. S. Volosivets
TI  - Realization functionals and description of a modulus of smoothness in variable exponent Lebesgue spaces
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2022
SP  - 13
EP  - 25
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2022_6_a1/
LA  - ru
ID  - IVM_2022_6_a1
ER  - 
%0 Journal Article
%A S. S. Volosivets
%T Realization functionals and description of a modulus of smoothness in variable exponent Lebesgue spaces
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2022
%P 13-25
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2022_6_a1/
%G ru
%F IVM_2022_6_a1
S. S. Volosivets. Realization functionals and description of a modulus of smoothness in variable exponent Lebesgue spaces. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2022), pp. 13-25. http://geodesic.mathdoc.fr/item/IVM_2022_6_a1/